Passivity framework for nonlinear state observer

We solve the general problem of reconstructing the state of a plant with the input and output information of the plant only, referred to as the observer problem. Our strategy of observer design is the output feedback passification to the error dynamics. In order to describe the passivity of the error dynamics effectively, the standard passivity is reformed for the augmented error dynamics which also include the plant dynamics. The proposed framework includes the precise definition of passivity-based state observer (PSO) and the design scheme of PSO. It is also shown that a PSO has its potential robustness to the measurement disturbance and that the framework of PSO unifies the earlier works in the literature.

[1]  Randy A. Freeman,et al.  Time-varying feedback for the global stabilization of nonlinear systems with measurement disturbances , 1997, 1997 European Control Conference (ECC).

[2]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[3]  D. Dawson,et al.  On the state observation and output feedback problems for nonlinear uncertain dynamic systems , 1992 .

[4]  P. Kokotovic,et al.  Global robustness of nonlinear systems to state measurement disturbances , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[5]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[6]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[7]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[8]  H. Hammouri,et al.  On uniform observation of nonuniformly observable systems , 1996 .

[9]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[10]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[11]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[12]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[14]  A. Tornambè Output feedback stabilization of a class of non-minimum phase nonlinear systems , 1992 .

[15]  S. Żak,et al.  State observation of nonlinear uncertain dynamical systems , 1987 .

[16]  D. Dawson,et al.  On the state observation and output feedback problems for nonlinear uncertain dynamic systems , 1992, Proceedings IEEE Southeastcon '92.

[17]  H. Shim,et al.  Saturation technique for constructing observer of multi-output nonlinear systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[19]  J. Tsinias Observer design for nonlinear control systems , 1989 .

[20]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[21]  J. P. Gauteier G. BORNlrRD OBSERVABILITY FOR ANY u(t) OF A CLASS OF NONLINEAR SYSTEMS , 1980 .

[22]  David J. Hill,et al.  Exponential Feedback Passivity and Stabilizability of Nonlinear Systems , 1998, Autom..

[23]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[24]  Zhong-Ping Jiang,et al.  Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems , 1998, IEEE Trans. Autom. Control..

[25]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[26]  J. Gauthier,et al.  Observability for any of a class of nonlinear systems , 1981 .