The Matrix Unwinding Function, with an Application to Computing the Matrix Exponential

A new matrix function corresponding to the scalar unwinding number of Corless, Hare, and Jeffrey is introduced. This matrix unwinding function, $\mathcal{U}$, is shown to be a valuable tool for deriving identities involving the matrix logarithm and fractional matrix powers, revealing, for example, the precise relation between $\log A^\alpha$ and $\alpha \log A$. The unwinding function is also shown to be closely connected with the matrix sign function. An algorithm for computing the unwinding function based on the Schur--Parlett method with a special reordering is proposed. It is shown that matrix argument reduction using the function $\mathrm{mod}(A) = A-2\pi i\, \mathcal{U}(A)$, which has eigenvalues with imaginary parts in the interval $(-\pi,\pi]$ and for which $\e^A = \e^{\mathrm{mod}(A)}$, can give significant computational savings in the evaluation of the exponential by scaling and squaring algorithms.

[1]  H. Piaggio Mathematical Analysis , 1955, Nature.

[2]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[3]  Contributions to the Computation of the Matrix Exponential. Revision , 1984 .

[4]  Leang S. Shieh,et al.  Matrix sector functions and their applications to systems theory , 1984 .

[5]  B. Parlett,et al.  Accurate Computation of Divided Differences of the Exponential Function , 1984 .

[6]  B N Parlett,et al.  Development of an Accurate Algorithm for EXP(Bt). Appendix , 1985 .

[7]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[8]  Carla Limongelli,et al.  Design and Implementation of Symbolic Computation Systems , 1996, Lecture Notes in Computer Science.

[9]  John Fitch,et al.  Design and Implementation of Symbolic Computation Systems , 1993, Lecture Notes in Computer Science.

[10]  Russell J. Bradford Algebraic Simplification of Multiple-Valued Functions , 1992, DISCO.

[11]  J. Demmel,et al.  On swapping diagonal blocks in real Schur form , 1993 .

[12]  Robert M. Corless,et al.  Essential Maple: An Introduction for Scientific Programmers , 1995 .

[13]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[14]  Robert M. Corless,et al.  The unwinding number , 1996, SIGS.

[15]  Helmer Aslaksen Multiple-valued complex functions and computer algebra , 1996, SIGS.

[16]  Charles M. Patton A representation of branch-cut information , 1996, SIGS.

[17]  Stephen M. Watt,et al.  Reasoning about the Elementary Functions of Complex Analysis , 2000, Annals of Mathematics and Artificial Intelligence.

[18]  Nicholas J. Higham,et al.  A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra , 2000, SIAM J. Matrix Anal. Appl..

[19]  Nicholas J. Higham,et al.  Approximating the Logarithm of a Matrix to Specified Accuracy , 2000, SIAM J. Matrix Anal. Appl..

[20]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[21]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[22]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[23]  Nicholas J. Higham,et al.  A Schur-Parlett Algorithm for Computing Matrix Functions , 2003, SIAM J. Matrix Anal. Appl..

[24]  Nicholas J. Higham,et al.  The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[25]  Nicholas J. Higham,et al.  Functions Preserving Matrix Groups and Iterations for the Matrix Square Root , 2005, SIAM J. Matrix Anal. Appl..

[26]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[27]  Awad H. Al-Mohy,et al.  A New Scaling and Squaring Algorithm for the Matrix Exponential , 2009, SIAM J. Matrix Anal. Appl..

[28]  Nicholas J. Higham,et al.  A Schur-Padé Algorithm for Fractional Powers of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[29]  Miloud Sadkane,et al.  A Low-Rank Approximation for Computing the Matrix Exponential Norm , 2011, SIAM J. Matrix Anal. Appl..

[30]  Bit W. Kahan Branch Cuts for Complex Elementary Functions or Much Ado About Nothing ' s Sign , 2011 .

[31]  Awad H. Al-Mohy,et al.  Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm , 2012, SIAM J. Sci. Comput..

[32]  K. Fujii Quantum Damped Harmonic Oscillator , 2012, 1209.1437.

[33]  Nicholas J. Higham,et al.  An Improved Schur-Padé Algorithm for Fractional Powers of a Matrix and Their Fréchet Derivatives , 2013, SIAM J. Matrix Anal. Appl..

[34]  Awad H. Al-Mohy,et al.  Computing the Fréchet Derivative of the Matrix Logarithm and Estimating the Condition Number , 2013, SIAM J. Sci. Comput..

[35]  Stefan Güttel,et al.  Scaled and Squared Subdiagonal Padé Approximation for the Matrix Exponential , 2016, SIAM J. Matrix Anal. Appl..