How Good is Google Bard’s Visual Understanding? An Empirical Study on Open Challenges

[1]  L. Gool,et al.  Indiscernible Object Counting in Underwater Scenes , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  L. Gool,et al.  Advances in deep concealed scene understanding , 2023, Visual Intelligence.

[3]  Henrique Pondé de Oliveira Pinto,et al.  GPT-4 Technical Report , 2023, 2303.08774.

[4]  Andrew M. Dai,et al.  PaLM: Scaling Language Modeling with Pathways , 2022, J. Mach. Learn. Res..

[5]  L. Gool,et al.  Video Polyp Segmentation: A Deep Learning Perspective , 2022, Machine Intelligence Research.

[6]  Renelito Delos Santos,et al.  LaMDA: Language Models for Dialog Applications , 2022, ArXiv.

[7]  Ming-Ming Cheng,et al.  Concealed Object Detection , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Nicola Conci,et al.  Visual Sentiment Analysis from Disaster Images in Social Media , 2020, Sensors.

[9]  D. Tuia,et al.  RSVQA: Visual Question Answering for Remote Sensing Data , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Xinlei Chen,et al.  Towards VQA Models That Can Read , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2019, ICLR.

[12]  Xiaochun Cao,et al.  Single Image Deraining: A Comprehensive Benchmark Analysis , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[14]  Subhransu Maji,et al.  Fine-Grained Visual Classification of Aircraft , 2013, ArXiv.

[15]  C. Habel,et al.  Language , 1931, NeuroImage.