Effect of positional substitution of methyl group on the fluorescence properties of quinolinium ion

[1]  Thomas Steinbrecher,et al.  Tautomerism in 7-hydroxyquinoline: a combined experimental and theoretical study in water. , 2011, The journal of physical chemistry. A.

[2]  Kyoung Chul Ko,et al.  Solvent effect on the excited-state proton transfer of 7-hydroxyquinoline along a hydrogen-bonded ethanol dimer. , 2011, Physical chemistry chemical physics : PCCP.

[3]  T. Arai,et al.  Fluorescence Enhancement in 7-Hydroxyquinoline Analogs by Methyl Substitution and Their Spectroscopic Characteristics in Aqueous Solution , 2010 .

[4]  D. Spring,et al.  Fluorescent chemosensors for Zn(2+). , 2010, Chemical Society reviews.

[5]  Weisheng Liu,et al.  Both visual and fluorescent sensor for Zn2+ based on quinoline platform. , 2010, Inorganic chemistry.

[6]  D. Huppert,et al.  Excited-State Proton Transfer and Proton Reactions of 6-Hydroxyquinoline and 7-Hydroxyquinoline in Water and Ice , 2009 .

[7]  Han Zhang,et al.  8-Methoxyquinoline based turn-on metal fluoroionophores , 2007 .

[8]  M. S. Mehata Photoinduced excited state proton rearrangement of 6-hydroxyquinoline along a hydrogen-bonded acetic acid wire , 2007 .

[9]  V. Dubois,et al.  A site-selective spectroscopy of naphthalene and quinoline in TEOS/MTEOS xerogels. , 2005, Physical chemistry chemical physics : PCCP.

[10]  M. S. Mehata,et al.  Fluorescence quenching of 6-methoxyquinoline: an indicator for sensing chloride ion in aqueous media , 2002 .

[11]  H. Joshi,et al.  Excited-state intermolecular proton transfer reaction of 6-hydroxyquinoline in protic polar medium , 2002 .

[12]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[13]  C. D. Geddes,et al.  Optical halide sensing using fluorescence quenching : theory, simulations and applications : a review , 2001 .

[14]  R. Yang,et al.  Extraordinary hyperconjugation of the methyl group in the S(1) state of 8-methylquinoline. , 2001, Luminescence : the journal of biological and chemical luminescence.

[15]  A. Verkman,et al.  Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. , 2000, Biophysical chemistry.

[16]  Shigeru Kohtani,et al.  Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: mechanism of triple proton transfer in the hydrogen-bonded system , 2000 .

[17]  J. Fraissard,et al.  LASER-INDUCED FLUORESCENCE OF QUINOLINE ADSORBED ON ACIDIC ZEOLITES , 1997 .

[18]  Sean W. Carrigan,et al.  The fluorescence quenching of 5,6-benzoquinoline and its conjugate acid by Cl−, Br−, SCN− and I− ions , 1996 .

[19]  A. Douhal,et al.  Solvation effects in jet-cooled 7-hydroxyquinoline , 1994 .

[20]  H. Tripathi,et al.  Excited state solvation dynamics of 6-methoxyquinoline , 1991 .

[21]  J. Najbar,et al.  Internal heavy-atom effect on the T1 states of monochloroquinolines and monochloronaphthalenes , 1983 .

[22]  W. Moomaw,et al.  Luminescence and hydrogen bonding in quinoline and isoquinoline , 1977 .

[23]  G. Fischer Electronic spectra of azanaphthalenes. Mixed crystal spectra of 1,6-naphthyridine-d6, cinnoline-d6, and quinoline-d7 , 1974 .

[24]  S. Hadley Direct determination of singlet .far. triplet intersystem crossing quantum yield. II. Quinoline, isoquinoline, and quinoxaline , 1971 .

[25]  R. Hochstrasser THE LUMINESCENCE OF COMPLEX MOLECULES IN RELATION TO THE INTERNAL CONVERSION OF EXCITATION ENERGY: PART II. N-HETEROAROMATICS , 1960 .

[26]  S. Knight,et al.  The Ultraviolet Absorption Spectra and the Dissociation Constants of the Monochloroquinolines and the Monomethylquinolines , 1955 .

[27]  Miyamoto Ryo,et al.  Time-Dependent DFT Study of Emission Mechanism of 8-Hydroxyquinoline Derivatives as Fluorescent Chemosensors for Metal Ions , 2006 .

[28]  Zijian Guo,et al.  Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors , 2004 .