Microglial activation in Parkinson’s disease using [18F]-FEPPA

[1]  H. Miyajima,et al.  Extrastriatal spreading of microglial activation in Parkinson’s disease: a positron emission tomography study , 2016, Annals of Nuclear Medicine.

[2]  Alan A. Wilson,et al.  Imaging Striatal Microglial Activation in Patients with Parkinson’s Disease , 2015, PloS one.

[3]  Alan A. Wilson,et al.  Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. , 2015, JAMA psychiatry.

[4]  B. Pollock,et al.  In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA , 2015, Molecular Psychiatry.

[5]  Alan A. Wilson,et al.  Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA. , 2015, Schizophrenia bulletin.

[6]  E. Rabiner,et al.  Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  Alan A. Wilson,et al.  Quantitative imaging of neuroinflammation in human white matter: A positron emission tomography study with translocator protein 18 kDa radioligand, [18F]‐FEPPA , 2014, Synapse.

[8]  Alan A. Wilson,et al.  Kinetic Modeling of the Monoamine Oxidase B Radioligand [11C]SL25.1188 in Human Brain with High-Resolution Positron Emission Tomography , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  Alan A. Wilson,et al.  Neuroinflammation in healthy aging: A PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [18F]-FEPPA , 2014, NeuroImage.

[10]  F. Turkheimer,et al.  Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. , 2013, Parkinsonism & related disorders.

[11]  Paul Edison,et al.  Microglia, Amyloid, and Glucose Metabolism in Parkinson’s Disease with and without Dementia , 2013, Neuropsychopharmacology.

[12]  B. Lopresti,et al.  Molecular imaging of microglia/macrophages in the brain , 2013, Glia.

[13]  E. Katunina,et al.  [Epidemiology of Parkinson's disease]. , 2013, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[14]  D. Perani,et al.  In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. , 2013, Parkinsonism & related disorders.

[15]  Alan A. Wilson,et al.  Translocator Protein (18 kDa) Polymorphism (rs6971) Explains in-vivo Brain Binding Affinity of the PET Radioligand [18F]-FEPPA , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  V. Papadopoulos,et al.  Structural and functional evolution of the translocator protein (18 kDa). , 2012, Current molecular medicine.

[17]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Sylvain Houle,et al.  Quantitation of Translocator Protein Binding in Human Brain with the Novel Radioligand [18F]-FEPPA and Positron Emission Tomography , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[20]  A. Rehemtulla,et al.  Molecular Imaging , 2009, Methods in Molecular Biology.

[21]  Gerhard Rammes,et al.  Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders , 2010, Nature Reviews Drug Discovery.

[22]  Roger N Gunn,et al.  Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  K. Leenders,et al.  [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson's disease? , 2010, Parkinsonism & related disorders.

[24]  C. Martini,et al.  The spontaneous Ala147Thr amino acid substitution within the translocator protein influences pregnenolone production in lymphomonocytes of healthy individuals. , 2009, Endocrinology.

[25]  S. Houle,et al.  Parametric modeling of [11C]harmine acquired on the HRRT PET , 2009 .

[26]  S. Galderisi,et al.  Ala147Thr substitution in translocator protein is associated with adult separation anxiety in patients with depression. , 2009, Psychiatric genetics.

[27]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  Sylvain Houle,et al.  Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. , 2008, Nuclear medicine and biology.

[29]  Ming-Kai Chen,et al.  Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. , 2008, Pharmacology & therapeutics.

[30]  Shitij Kapur,et al.  An automated method for the extraction of regional data from PET images , 2006, Psychiatry Research: Neuroimaging.

[31]  Alexander Hammers,et al.  In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease , 2006, Neurobiology of Disease.

[32]  E. Yoshikawa,et al.  Microglial activation and dopamine terminal loss in early Parkinson's disease , 2005, Annals of neurology.

[33]  Alexander Gerhard,et al.  Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study , 2005, NeuroImage.

[34]  Badreddine Bencherif,et al.  Application of MRI-based partial-volume correction to the analysis of PET images of mu-opioid receptors using statistical parametric mapping. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  H. Park,et al.  Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells , 2004, Journal of cellular physiology.

[36]  Makoto Sawada,et al.  Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains , 2003, Acta Neuropathologica.

[37]  R B Banati,et al.  [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy , 2003, Neurology.

[38]  S. Galiègue,et al.  Peripheral benzodiazepine receptors and mitochondrial function , 2002, Neurochemistry International.

[39]  F E Turkheimer,et al.  Statistical Modeling of Positron Emission Tomography Images in Wavelet Space , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  W. Streit,et al.  Microglial Response to Brain Injury: A Brief Synopsis , 2000, Toxicologic pathology.

[41]  R. Dobbs,et al.  Association of circulating TNF‐α and IL‐6 with ageing and parkinsonism , 1999 .

[42]  R. Dobbs,et al.  Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. , 1999, Acta neurologica Scandinavica.

[43]  Peter Riederer,et al.  Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients , 1995, Neuroscience Letters.

[44]  P Riederer,et al.  Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. , 1995, Neuroscience letters.

[45]  P. Riederer,et al.  Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients , 1994, Neuroscience Letters.

[46]  P. Riederer,et al.  Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. , 1994, Neuroscience letters.

[47]  J. Nurnberger,et al.  A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. , 1991, Nucleic acids research.

[48]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  E. Costa,et al.  The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. , 1990, The Journal of biological chemistry.

[50]  P. Mcgeer,et al.  Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains , 1988, Neurology.