Infection and nuclear interaction in mammalian cells by ‘Candidatus Berkiella cookevillensis’, a novel bacterium isolated from amoebae

[1]  Zhao‐Qing Luo,et al.  Legionella and Coxiella effectors: strength in diversity and activity , 2017, Nature Reviews Microbiology.

[2]  J. Vadivelu,et al.  Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance? , 2017, PLoS neglected tropical diseases.

[3]  R. Heinzen,et al.  Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L , 2017, Cellular microbiology.

[4]  F. Verni,et al.  “Candidatus Gortzia shahrazadis”, a Novel Endosymbiont of Paramecium multimicronucleatum and a Revision of the Biogeographical Distribution of Holospora-Like Bacteria , 2016, Front. Microbiol..

[5]  D. Teis,et al.  ESCRT‐III and Vps4: a dynamic multipurpose tool for membrane budding and scission , 2016, The FEBS journal.

[6]  T. Mettenleiter,et al.  Breaching the Barrier-The Nuclear Envelope in Virus Infection. , 2016, Journal of molecular biology.

[7]  R. Voituriez,et al.  ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death , 2016, Science.

[8]  Yohannes T Mehari,et al.  Draft Genome Sequences of Two Novel Amoeba-Resistant Intranuclear Bacteria, “Candidatus Berkiella cookevillensis” and “Candidatus Berkiella aquae” , 2016, Genome Announcements.

[9]  Yohannes T Mehari,et al.  Description of 'Candidatus Berkiella aquae' and 'Candidatus Berkiella cookevillensis', two intranuclear bacteria of freshwater amoebae. , 2016, International journal of systematic and evolutionary microbiology.

[10]  H. Hilbi,et al.  Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones , 2015, Cellular microbiology.

[11]  M. Horn,et al.  Intranuclear bacteria: inside the cellular control center of eukaryotes. , 2015, Trends in cell biology.

[12]  J. Celli,et al.  Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? , 2014, Nature Reviews Microbiology.

[13]  M. Horn,et al.  Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae , 2014, The ISME Journal.

[14]  J. Kleinschmidt,et al.  Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis , 2013, PLoS pathogens.

[15]  B. Raymond,et al.  Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. , 2013, Trends in microbiology.

[16]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[17]  Jian Ye,et al.  Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction , 2012, BMC Bioinformatics.

[18]  P. Cossart,et al.  When bacteria target the nucleus: the emerging family of nucleomodulins , 2012, Cellular microbiology.

[19]  C. Roy,et al.  The Coxiella burnetii Dot/Icm System Creates a Comfortable Home through Lysosomal Renovation , 2011, mBio.

[20]  Steffen Frey,et al.  Characterisation of the passive permeability barrier of nuclear pore complexes , 2009, The EMBO journal.

[21]  Xiaofeng Zhang,et al.  Nuclear Translocated Ehrlichia chaffeensis Ankyrin Protein Interacts with a Specific Adenine-Rich Motif of Host Promoter and Intronic Alu Elements , 2009, Infection and Immunity.

[22]  N. Dubilier,et al.  Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. , 2009, Environmental microbiology.

[23]  S. Vainio,et al.  Actin-based mechanism of holospora obtusa trafficking in Paramecium caudatum. , 2009, Protist.

[24]  R. Heinzen,et al.  Coxiella type IV secretion and cellular microbiology. , 2009, Current opinion in microbiology.

[25]  V. Centonze,et al.  Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. , 2008, Microbiology.

[26]  B. J. Hayes,et al.  Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens. , 2006, Environmental science & technology.

[27]  Jean-Michel Claverie,et al.  Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens , 2006, PLoS genetics.

[28]  B. Lang,et al.  Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. , 2005, Biochemical and biophysical research communications.

[29]  M. Swanson,et al.  Differentiate to thrive: lessons from the Legionella pneumophila life cycle , 2004, Molecular microbiology.

[30]  S. Boo,et al.  Endonuclear bacteria in Euglena hemichromata (Euglenophyceae): a proposed pathway to endonucleobiosis , 2003 .

[31]  N. Pante,et al.  Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. , 2002, Molecular biology of the cell.

[32]  Rudolf Amann,et al.  Unlabeled Helper Oligonucleotides Increase the In Situ Accessibility to 16S rRNA of Fluorescently Labeled Oligonucleotide Probes , 2000, Applied and Environmental Microbiology.

[33]  O. Harb,et al.  From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. , 2000, Environmental microbiology.

[34]  R. Heinzen,et al.  Dynamics of Actin-Based Movement byRickettsia rickettsii in Vero Cells , 1999, Infection and Immunity.

[35]  R. Amann,et al.  Flow Cytometric Analysis of the In Situ Accessibility of Escherichia coli 16S rRNA for Fluorescently Labeled Oligonucleotide Probes , 1998, Applied and Environmental Microbiology.

[36]  T. Scott,et al.  Isolation of an Amoeba Naturally Harboring a Distinctive Legionella Species , 1998, Applied and Environmental Microbiology.

[37]  P. Viriyavejakul,et al.  Electron‐microscopic examination of Rickettsia tsutsugamushi‐infected human liver , 1998, Tropical medicine & international health : TM & IH.

[38]  L. Tompkins,et al.  A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii , 1992, Infection and immunity.

[39]  J. Auwerx,et al.  The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation , 1991, Experientia.

[40]  Harris,et al.  Lymphokine inducing "terminal differentiation" of the human monoblast leukemia line U937: a role for gamma interferon. , 1983, Blood.

[41]  M. Horwitz Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes , 1983, The Journal of experimental medicine.

[42]  T. Tsuruhara,et al.  Intranuclear Rickettsia tsutsugamushi in Cultured Mouse Fibroblasts (L Cells) , 1982, Microbiology and immunology.

[43]  C. Wisseman,et al.  Infection cycle of Rickettsia rickettsii in chicken embryo and L-929 cells in culture , 1976, Infection and immunity.

[44]  H. Görtz,et al.  Towards an understanding of the killer trait: Caedibacter endocytobionts in Paramecium. , 2006, Progress in molecular and subcellular biology.

[45]  T. Zusman,et al.  The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. , 2005, FEMS microbiology reviews.

[46]  R. Amann,et al.  Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. , 1993, Cytometry.

[47]  W. Burgdorfer,et al.  Rickettsia bellii sp. nov.: a Tick-Borne Rickettsia, Widely Distributed in the United States, That Is Distinct from the Spotted Fever and Typhus Biogroups , 1983 .