Object-based classification of very high resolution panchromatic images for evaluating recent change in the structure of patterned peatlands

An airphoto survey carried out at the La Grande hydroelectrical complex (James Bay, Quebec) revealed numerous signs of degradation of patterned fens, with a decrease in terrestrial vegetation and increase in ponds, a process known as aqualysis. The principal goal of this study is to provide information on the present and past (the last 50 years) state of patterned peatlands, associated with the pattern of the aquatic and terrestrial compartments, and to evaluate their changing cover using remote sensing techniques. In this paper, we present a semi-automated, object-based method for QuickBird panchromatic image classification. The method emphasizes contextual information. We have also integrated texture images calculated in advance as supplementary data layers in the process of segmentation and classification. The validation of QuickBird image classification shows that the proposed method can delineate peatlands with 95% producer’s accuracy and 88% user’s accuracy. The overall classification accuracy in the peatlands is 81%. The same robust technique was applied to the aerial photographs taken in 1957. The classification of QuickBird images and aerial photographs was used to assess the structural development of patterned peatlands in the La Grande 3 sector over the last 50 years. The analysis shows an increase in aquatic areas for only two out of seven studied peatlands. To confirm our hypothesis of active aqualysis, additional image analysis is required from other areas of the La Grande hydroelectrical complex where the aqualysis process is more pronounced.

[1]  D. S. Gilmer,et al.  Enumeration of prairie wetlands with Landsat and aircraft data , 1980 .

[2]  Isabelle Couloigner,et al.  Modified fuzzy c‐means classification technique for mapping vague wetlands using Landsat ETM+ imagery , 2006 .

[3]  F. Parmiggiani,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Richard Frankham,et al.  Contribution of inbreeding to extinction risk in threatened species , 2002 .

[5]  T. Moore,et al.  Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada , 2007 .

[6]  J. Lancaster,et al.  Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns , 2002 .

[7]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[8]  S. Aichele,et al.  Wetland delineation with IKONOS high-resolution satellite imagery, Fort Custer Training Center, Battle Creek, Michigan, 2005 , 2006 .

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[11]  Line Rochefort,et al.  From Satellite Imagery to Peatland Vegetation Diversity: How Reliable Are Habitat Maps? , 2002 .

[12]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[13]  Lake Development in the Boreal Peatlands of Southeastern Labrador, Canada , 1984 .

[14]  R. Marrs,et al.  Spatial and temporal changes in salt marsh distribution in the Dee estuary, NW England, determined from aerial photographs , 2004, Wetlands Ecology and Management.

[15]  B. Guindon,et al.  Computer-Based Aerial Image Understanding: A Review and Assessment of its Application to Planimetric Information Extraction from Very High Resolution Satellite Images , 1997 .

[16]  A. Jakomulska,et al.  Variogram-Derived Measures of Textural Image Classification , 2001 .

[17]  Taha B. M. J. Ouarda,et al.  Evaluation of RADARSAT-1 images acquired in fine mode for the study of boreal peatlands: a case study in James Bay, Canada , 2005 .

[18]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[19]  M. Watmough,et al.  Current approaches to wetland status and trends monitoring in prairie Canada and the continental United States of America , 2007 .

[20]  Taha B. M. J. Ouarda,et al.  Détection et classification de tourbières ombrotrophes du Québec à partir d'images RADARSAT-1 , 2003 .

[21]  E. Karofeld The dynamics of the formation and development of hollows in raised bogs in Estonia , 1998 .

[22]  S. Franklin,et al.  Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan , 2002 .

[23]  A. Marçal,et al.  Analysis of geostatistical parameters for texture classification of satellite images. , 2006 .

[24]  P. Richard,et al.  Écologie des tourbières du Québec-Labrador , 2003 .

[25]  Thomas Blaschke,et al.  An Object-based Methodology for Mapping Mires Using High Resolution Imagery , 2003 .

[26]  S. Franklin,et al.  Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia , 2001 .

[27]  Thierry Toutin,et al.  Review article: Geometric processing of remote sensing images: models, algorithms and methods , 2004 .

[28]  Tim R. Moore,et al.  Uncertainty in Predicting the Effect of Climatic Change on the Carbon Cycling of Canadian Peatlands , 1998 .

[29]  A. Rousseau,et al.  Étalonnage de sondes FDR (« frequency domain reflectometry ») sur les cinq premiers centimètres des sols et des couverts de bryophytes de deux tourbières minérotrophes du milieu boréal Québécois (Canada) , 2010 .

[30]  D. Foster,et al.  Mire Development, Pool Formation and Landscape Processes on Patterned Fens in Dalarna, Central Sweden , 1987 .

[31]  C. Lavoie,et al.  Reconstructing the recent dynamics of mires using a multitechnique approach , 2003 .

[32]  Sylvain Jutras,et al.  Étude de la connectivité physique des tourbières au réseau hydrographique du bassin versant de La Grande rivière à l'aide d'une classification orientée objet d'images Landsat-7 ETM+. , 2007 .

[33]  Richard A. Fournier,et al.  An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada , 2007 .

[34]  L. Hubert-Moy,et al.  Object-oriented Mapping and Analysis of Wetlands using SPOT 5 Data , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[35]  C. Burnett,et al.  A multi-scale segmentation/object relationship modelling methodology for landscape analysis , 2003 .

[36]  B Guindon Combining Diverse Spectral, Spatial and Contextual Attributes in Segment-Based Image Classification , 2000 .

[37]  Peter M. Atkinson,et al.  Issues of scale and optimal pixel size , 1999 .

[38]  S. Payette,et al.  Dendroecological Evidence of Lake-Level Changes during the Last Three Centuries in Subarctic Québec , 1988, Quaternary Research.

[39]  T. Dahl,et al.  Status and trends of wetlands in the conterminous United States, 1986 to 1997 , 2000 .

[40]  Charles G. Storrs,et al.  Classification and inventory of wetlands in the Southern Appalachian Region , 1994 .

[41]  Lawrence W. Martz,et al.  Multisensor Hydrologic Assessment of a Freshwater Wetland , 2001 .

[42]  Richard G Lathrop,et al.  Statewide mapping and assessment of vernal pools: a New Jersey case study. , 2005, Journal of environmental management.

[43]  D. Foster,et al.  Origin of string patterns in boreal peatlands , 1983, Nature.

[44]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[45]  T. Blaschke TOWARDS A FRAMEWORK FOR CHANGE DETECTION BASED ON IMAGE OBJECTS , 2005 .

[46]  S. Payette,et al.  Holocene water-level fluctuations of a subarctic lake at the tree line in northern Québec , 1993 .

[47]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[48]  Alain Pietroniro,et al.  Connectivity and storage functions of channel fens and flat bogs in northern basins , 2003 .

[49]  Brandt Tso,et al.  Scene classification using combined spectral, textural, and contextual information , 2004, SPIE Defense + Commercial Sensing.

[50]  R. Sugumaran,et al.  Using Remote Sensing Data to Study Wetland Dynamics in Iowa , 2004 .

[51]  L. R. Belyea Climatic and topographic limits to the abundance of bog pools , 2007 .

[52]  L. R. Belyea,et al.  Carbon sequestration in peatland: patterns and mechanisms of response to climate change , 2004 .

[53]  I M Kettles,et al.  Peatlands of Canada , 2000 .

[54]  Yohay Carmel,et al.  Computerized classification of Mediterranean vegetation using panchromatic aerial photographs , 1998 .

[55]  D. Foster,et al.  Role of Ecosystem Development and Climate Change in Bog Formation in Central Sweden , 1990 .

[56]  Craig A. Coburn,et al.  A multiscale texture analysis procedure for improved forest stand classification , 2004 .

[57]  S. Payette,et al.  DYNAMICS OF SUBARCTIC WETLAND FORESTS OVER THE PAST 1500 YEARS , 2004 .

[58]  Kenji Yoshikawa,et al.  Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska , 2003 .

[59]  Isabelle Couloigner,et al.  EVALUATION OF INCORPORATING TEXTURE INTO WETLAND MAPPING FROM MULTISPECTRAL IMAGES , 2004 .

[60]  Richard A. Fournier,et al.  Towards a strategy to implement the Canadian Wetland Inventory using satellite remote sensing , 2007 .

[61]  Derek M. Cunnold,et al.  Observations of 1,1‐difluoroethane (HFC‐152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates , 2007 .

[62]  Emmanuel P. Baltsavias Fusion of sensor data, knowledge sources and algorithms for extraction and classification of topographic objects , 1999 .

[63]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[64]  N. Coops,et al.  Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification , 2007 .

[65]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.