fMR-adaptation: a tool for studying the functional properties of human cortical neurons.

[1]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[2]  R. Vogels,et al.  Can neuroimaging really tell us what the human brain is doing? The relevance of indirect measures of population activity. , 2001, Acta psychologica.

[3]  G. Humphreys,et al.  Cognitive neuropsychology and functional brain imaging: implications for functional and anatomical models of cognition. , 2001, Acta psychologica.

[4]  K G Munhall,et al.  Functional imaging during speech production. , 2001, Acta psychologica.

[5]  R. Savoy History and future directions of human brain mapping and functional neuroimaging. , 2001, Acta psychologica.

[6]  L. Parsons,et al.  Integrating cognitive psychology, neurology and neuroimaging. , 2001, Acta psychologica.

[7]  B. de Gelder,et al.  Beyond localisation: a dynamical dual route account of face recognition. , 2001, Acta psychologica.

[8]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[9]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[10]  T. Shallice,et al.  Neuroimaging evidence for dissociable forms of repetition priming. , 2000, Science.

[11]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[12]  Leslie G. Ungerleider,et al.  Complementary neural mechanisms for tracking items in human working memory. , 2000, Science.

[13]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[14]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[15]  T. Allison,et al.  Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. , 1999, Cerebral cortex.

[16]  R. Dolan,et al.  Contrast polarity and face recognition in the human fusiform gyrus , 1999, Nature Neuroscience.

[17]  Ravi S. Menon,et al.  Repetition priming and the time course of object recognition: an fMRI study. , 1999, Neuroreport.

[18]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[19]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[21]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[22]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[23]  Heinrich H Bülthoff,et al.  Why the visual recognition system might encode the effects of illumination , 1998, Vision Research.

[24]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[25]  M. Farah,et al.  What is "special" about face perception? , 1998, Psychological review.

[26]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[27]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[28]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[29]  R L Buckner,et al.  Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[31]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[32]  J. B. Demb,et al.  Semantic Repetition Priming for Verbal and Pictorial Knowledge: A Functional MRI Study of Left Inferior Prefrontal Cortex , 1997, Journal of Cognitive Neuroscience.

[33]  S. Edelman,et al.  Computational Theories of Object Recognition Edelman -computation and Object Recognition Ii Box 1. Structural Descriptions ~ 7~ Recognition by Components Varieties of Alignment Multidimensional Histograms Approximation in Feature Space , 2022 .

[34]  S Edelman,et al.  A model of visual recognition and categorization. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[36]  S. Edelman,et al.  Translation invariance in object recognition, and its relation to other visual transformations , 1997 .

[37]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[38]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[39]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[40]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Rauch,et al.  Response and Habituation of the Human Amygdala during Visual Processing of Facial Expression , 1996, Neuron.

[42]  J. R. Baker,et al.  The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[44]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[45]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[46]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Michael C. Doyle,et al.  Modulation of event-related potentials by the repetition of drawings of novel objects. , 1995, Brain research. Cognitive brain research.

[48]  Leslie G. Ungerleider,et al.  Functional MRI evidence for adult motor cortex plasticity during motor skill learning , 1995, Nature.

[49]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  I Biederman,et al.  Size Invariance in Visual Object Priming of Gray-Scale Images , 1995, Perception.

[51]  Martha J. Farah,et al.  Face perception and within-category discrimination in prosopagnosia , 1995, Neuropsychologia.

[52]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[53]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[54]  F. Miezin,et al.  Functional anatomical studies of explicit and implicit memory retrieval tasks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Ian T. Jolliffe,et al.  Applied Factor Analysis in the Natural Sciences. , 1994 .

[56]  E. DeYoe,et al.  Functional magnetic resonance imaging (FMRI) of the human brain , 1994, Journal of Neuroscience Methods.

[57]  M. Ito,et al.  Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. , 1994, Cerebral cortex.

[58]  R. Desimone,et al.  Inferior temporal mechanisms for invariant object recognition. , 1994, Cerebral cortex.

[59]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[60]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[62]  I Biederman,et al.  Metric invariance in object recognition: a review and further evidence. , 1992, Canadian journal of psychology.

[63]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[64]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  A. Damasio Category-related recognition defects as a clue to the neural substrates of knowledge , 1990, Trends in Neurosciences.

[66]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[67]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[68]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[69]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[70]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[71]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[73]  A. Dale,et al.  Selective averaging of rapidly presented individual trials using fMRI , 1997, Human brain mapping.

[74]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[75]  A. Damasio,et al.  Face agnosia and the neural substrates of memory. , 1990, Annual review of neuroscience.

[76]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[77]  F S Werblin,et al.  The control of sensitivity in the retina. , 1973, Scientific American.

[78]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[79]  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[80]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .