Integration of thermomechanical strains into tolerancing analysis

To improve the performance of a helicopter turboshaft engine requires optimising the energy yield of the different components, and more particularly controlling clearance between the tips of the high pressure turbine blades and the stator. Dimension-chain tools take into account the manufacturing dispersion of the parts and assembly defects. This ensures the interchangeability of the different components and guarantees that a turbine can carry out different service functions, as the turbine is modelled in infinitely rigid solids. However, this approach does not take thermomechanical effects into account. And yet, the different operating regimes of a helicopter engine make it indispensable that the effects caused by the thermodynamic cycle should be integrated. The aim of this article is to show how using dimension chain and thermomechanical tools can contribute to controlling clearances at the tip of a high pressure turbine blade.

[1]  Utpal Roy,et al.  Representation and interpretation of geometric tolerances for polyhedral objects - I. Form tolerances , 1998, Comput. Aided Des..

[2]  Daniel E. Whitney,et al.  A Prototype of Feature-Based Design for Assembly , 1993 .

[3]  Joseph K. Davidson,et al.  A New Mathematical Model for Geometric Tolerances as Applied to Round Faces , 2002 .

[4]  Kemper Lewis,et al.  A comprehensive robust design approach for decision trade-offs in complex systems design , 2001 .

[5]  Daniel E. Whitney,et al.  A Prototype of Feature-Based Design for Assembly , 1991, MIT-JSME Workshop.

[6]  Kenneth W. Chase,et al.  Variation Simulation of Fixtured Assembly Processes for Compliant Structures Using Piecewise-Linear Analysis , 2005 .

[7]  Joseph K. Davidson,et al.  Analysis neutral data structure for GD&T , 2008, J. Intell. Manuf..

[8]  Jaime A. Camelio,et al.  Modeling and Control of Compliant Assembly Systems , 2006 .

[9]  Pierre Bourdet,et al.  Geometrical Behavior Laws for Computer-aided Tolerancing , 1996 .

[10]  Jean-Yves Dantan,et al.  Geometrical product specifications - model for product life cycle , 2008, Comput. Aided Des..

[11]  Denis Teissandier,et al.  Operations on polytopes: application to tolerance analysis , 2011, ArXiv.

[12]  Byeng D. Youn,et al.  Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction , 2007 .

[13]  Dufaure Jérome,et al.  A tolerancing framework to support geometric specifications traceability , 2008 .

[14]  Laurent Pierre,et al.  Analyse des tolérances géométriques dans un contexte multi-expertises, application à une turbine de moteur d'hélicoptère , 2007 .

[15]  Jean-Yves Dantan,et al.  Tolerance synthesis: quantifier notion and virtual boundary , 2005, Comput. Aided Des..

[16]  Denis Teissandier,et al.  A computer aided tolerancing model: proportioned assembly clearance volume , 1999, Comput. Aided Des..

[17]  Rikard Söderberg,et al.  Computer-aided robustness analysis for compliant assemblies , 2006 .

[18]  Serge Samper,et al.  Tolerance Analysis and Synthesis by Means , 2007 .

[19]  Joshua U. Turner Relative positioning of parts in assemblies using mathematical programming , 1990, Comput. Aided Des..

[20]  Alan Fleming,et al.  Geometric Relationships Between Toleranced Features , 1988, Artif. Intell..

[21]  Pierre Bourdet,et al.  A Study of Optimal-Criteria Identification Based on the Small-Displacement Screw Model , 1988 .

[22]  Alex Ballu,et al.  Choice of functional specifications using graphs within the framework of education , 1999 .

[23]  G. Ziegler Lectures on Polytopes , 1994 .

[24]  Utpal Roy,et al.  Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances , 1999, Comput. Aided Des..