Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon.

The methanolic extracts from the wood and bark of Cotylelobium melanoxylon were found to inhibit plasma glucose elevation after sucrose loading in rats and triglyceride elevation after olive oil loading in mice. A new stilbene dimer, melanoxylin A, together with the known stilbene dimers [(+)-ampelopsin F, (+)-isoampelopsin F, and (+)-epsilon-viniferin] and a trimer (vaticanol G) and a lignan [(+)-lyoniresinol] were isolated from the wood extract, and a new stilbene trimer, melanoxylin B, together with the known stilbene dimers [(+)-epsilon-viniferin and cis-(+)-epsilon-viniferin] and trimers (vaticanols A, E, and G) were isolated from the bark extract of C. melanoxylon. The principal constituents, vaticanols A, E, and/or G, inhibited plasma glucose and triglyceride elevation after sucrose loading in rats and olive oil loading in mice, respectively. In addition, vaticanols A, E, and/or G inhibited the enzyme activities of rat intestinal alpha-glucosidase, porcine pancreatic lipase, and rat lens aldose reductase.

[1]  D. Yuan,et al.  Structures of acetylated oleanane-type triterpene saponins, rarasaponins IV, V, and VI, and anti-hyperlipidemic constituents from the pericarps of Sapindus rarak. , 2009, Chemical & pharmaceutical bulletin.

[2]  H. Matsuda,et al.  Medicinal Foodstuffs. XXXIII. Gastroprotective Principles from Boesenbergia rotunda (Zingiberaceae) - Absolute Stereostructures of Diels-Alder Type Addition Prenylchalcones , 2008 .

[3]  H. Matsuda,et al.  Medicinal foodstuffs. XXXIV. Structures of new prenylchalcones and prenylflavanones with TNF-alpha and aminopeptidase N inhibitory activities from Boesenbergia rotunda. , 2008, Chemical & pharmaceutical bulletin.

[4]  國郎 小笠原,et al.  Chem. Pharm. Bull.(オピニオン) , 2007 .

[5]  H. Matsuda,et al.  Bioactive constituents from chinese natural medicines. XXIV. Hypoglycemic effects of Sinocrassula indica in sugar-loaded rats and genetically diabetic KK-A(y) mice and structures of new acylated flavonol glycosides, sinocrassosides A(1), A(2), B(1), and B(2). , 2007, Chemical & pharmaceutical bulletin.

[6]  Y. Kuo,et al.  Rhusemialins A-C, new cyclolignan esters from the roots of Rhus javanica var. roxburghiana. , 2007, Chemical & pharmaceutical bulletin.

[7]  Masayuki Yoshikawa,et al.  Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa. , 2007, Bioorganic & medicinal chemistry.

[8]  H. Matsuda,et al.  Medicinal flowers. XII.(1)) New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. , 2007, Chemical & pharmaceutical bulletin.

[9]  H. Matsuda,et al.  Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. , 2007, Journal of natural products.

[10]  Masayuki Yoshikawa,et al.  Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand. , 2006, Chemical & pharmaceutical bulletin.

[11]  H. Matsuda,et al.  Bioactive constituents from Chinese natural medicines. XVII. constituents with radical scavenging effect and new glucosyloxybenzyl 2-isobutylmalates from Gymnadenia conopsea. , 2006, Chemical & pharmaceutical bulletin.

[12]  Masayuki Yoshikawa,et al.  Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of Saussureosides A and B from Saussurea medusa. , 2005, Chemical & pharmaceutical bulletin.

[13]  H. Matsuda,et al.  Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). , 2005, Journal of natural products.

[14]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[15]  A. Katritzky,et al.  Heterocycles , 2022, Pharmaceutical Chemistry Journal.

[16]  H. Shimoda,et al.  Carnosic acid, a new class of lipid absorption inhibitor from sage. , 2004, Bioorganic & medicinal chemistry letters.

[17]  雅之 吉川,et al.  タイ産Salacia chinensisの生物活性:α-グルコシダーゼ阻害活性を指標とした品質評価 , 2003 .

[18]  H. Matsuda,et al.  Medicinal flowers. VIII. Radical scavenging constituents from the flowers of Prunus mume: structure of prunose III. , 2003, Chemical & pharmaceutical bulletin.

[19]  H. Shimoda,et al.  Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. , 2003, Bioorganic & medicinal chemistry letters.

[20]  M. Iinuma,et al.  Four New Stilbene Oligomers in the Root of Gnetum gnemon , 2002 .

[21]  Hyo Jin Kim,et al.  Cytotoxic and antimutagenic stilbenes from seeds ofPaeonia lactiflora , 2002, Archives of pharmacal research.

[22]  H. Matsuda,et al.  Absolute stereostructure of potent alpha-glucosidase inhibitor, Salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. , 2002, Bioorganic & medicinal chemistry.

[23]  M. Brownlee Biochemistry and molecular cell biology of diabetic complications , 2001, Nature.

[24]  Tetsuro Ito,et al.  A novel bridged stilbenoid trimer and four highly condensed stilbenoid oligomers in Vatica rassak , 2001 .

[25]  Li-Ping Zhang,et al.  Five novel oligostilbenes from the roots of Caragana sinica , 2001 .

[26]  H. Lou,et al.  Alkaloids and flavonoids from peanut skins. , 2001, Planta medica.

[27]  Riswan,et al.  Five New Oligostilbenes with One or Two Dihydrofurans form the Stem Bark of Vatica rassak. , 2001 .

[28]  I. G. Fantus,et al.  Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Iinuma,et al.  Oligostilbenoids in stem bark of Vatica rassak. , 2000, Phytochemistry.

[30]  Y. Kaneda,et al.  Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage , 2000, Nature.

[31]  H. Matsuda,et al.  Antidiabetogenic activity of oleanolic acid glycosides from medicinal foodstuffs. , 2000, BioFactors.

[32]  L. Ding,et al.  Oligostilbenes from Vitis heyneana , 1996 .

[33]  Y. Oshima,et al.  Ampelopsins F and G, novel bridged plant oligostilbenes from Ampelopsis brevipedunculata var. hancei roots (vitaceae) , 1993 .

[34]  Y. Oshima,et al.  Ampelopsins A, B and C, new oligostilbenes of Ampelopsis Brevipedunculata var. Hancei , 1990 .

[35]  S. Tsuchiya,et al.  Superoxide production from nonenzymatically glycated protein , 1988, FEBS letters.

[36]  R. Kikkawa,et al.  Effects of a new aldose reductase inhibitor on various tissues in vitro. , 1984, The Journal of pharmacology and experimental therapeutics.

[37]  R. Robinson Phytochemistry , 1962, Nature.