Characterizing Transiting Planet Atmospheres through 2025

The discovery of planets around other stars is revolutionizing our notions of planet formation and is poised to do the same for planetary climate. Studying transiting planets is complementary to eventual studies of directly imaged planets: (1) we can readily measure the mass and radius of transiting planets, linking atmospheric properties to bulk composition and formation, (2) many transiting planets are strongly irradiated and exhibit novel atmospheric physics, and (3) the most common temperate terrestrial planets orbit close to red dwarf stars and are difficult to image directly. We have only been able to comprehensively characterize the atmospheres of a handful of transiting planets, because most orbit faint stars. The Transiting Exoplanet Survey Satellite (TESS) will discover transiting planets orbiting the brightest stars, enabling, in principle, an atmospheric survey of 102-103 bright hot Jupiters and warm sub-Neptunes. Uniform observations of such a statistically significant sample would provide leverage to understand—and learn from—the diversity of short-period planets, and would identify the minority of truly special planets worthy of more intensive follow-up. We argue that the best way to maximize the scientific returns of TESS is to adopt a triage approach. A space mission consisting of a ~1 m telescope with an optical-NIR spectrograph could measure molecular absorption for nonterrestrial planets discovered by TESS, as well as eclipses and phase variations for the hottest jovians. Such a mission could observe up to 103 transits per year, thus enabling it to survey a large fraction of the bright (J < 11) hot-Jupiters and warm sub-Neptunes TESS is expected to find. The James Webb Space Telescope (JWST) could be used to perform detailed atmospheric characterization of the most interesting transiting targets (transit, eclipse, and—when possible—phase-resolved spectroscopy). TESS is also expected to discover a few temperate terrestrial planets transiting nearby M-Dwarfs. Characterizing these worlds will be time-intensive: JWST will need months to provide tantalizing constraints on the presence of an atmosphere, planetary rotational state, clouds, and greenhouse gases. Future flagship missions should be designed to provide better constraints on the habitability of M-Dwarf temperate terrestrial planets.

[1]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[2]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[3]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[4]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[5]  T. Schneider,et al.  Atmospheric Dynamics of Earth‐Like Tidally Locked Aquaplanets , 2010, 1001.5117.

[6]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[7]  E. Ford,et al.  A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry , 2013, 1312.1360.

[8]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[9]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[10]  Sara Seager,et al.  THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b , 2011, 1105.5143.

[11]  J. Linsky,et al.  The ultraviolet radiation environment in the habitable zones around low-mass exoplanet host stars , 2014 .

[12]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[13]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[14]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[15]  Douglas N. C. Lin,et al.  WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation , 2010, Nature.

[16]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[17]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[18]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[19]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[20]  S. Aigrain,et al.  Hst hot jupiter transmission spectral survey: Detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations , 2013, 1308.2106.

[21]  E. Kempton,et al.  THE ATMOSPHERIC CIRCULATION AND OBSERVABLE PROPERTIES OF NON-SYNCHRONOUSLY ROTATING HOT JUPITERS , 2014, 1402.4833.

[22]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[23]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF THE SUPER EARTH GJ 1214b: DEPENDENCE ON COMPOSITION AND METALLICITY , 2014, 1401.1898.

[24]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[25]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[26]  John Asher Johnson,et al.  THE FREQUENCY OF HOT JUPITERS ORBITING NEARBY SOLAR-TYPE STARS , 2012, 1205.2273.

[27]  A. Burrows Spectra as windows into exoplanet atmospheres , 2013, Proceedings of the National Academy of Sciences.

[28]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[29]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[30]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[31]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[32]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[33]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[34]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[35]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[36]  T. Barman,et al.  Warm ice giant GJ 3470b - II. Revised planetary and stellar parameters from optical to near-infrared transit photometry , 2014, 1406.6437.

[37]  J. Moses Chemical kinetics on extrasolar planets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  J. Winn,et al.  EMPIRICAL CONSTRAINTS ON THE OBLATENESS OF AN EXOPLANET , 2009, 0912.1594.

[39]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[40]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[41]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[42]  E. Gaidos,et al.  NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM , 2013, 1308.4404.

[43]  Tyler D. Robinson,et al.  SPECTRUM-DRIVEN PLANETARY DEGLACIATION DUE TO INCREASES IN STELLAR LUMINOSITY , 2014, 1403.3695.

[44]  C. Griffith,et al.  Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  M. Line,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. III. DIAGNOSING CHEMICAL DISEQUILIBRIUM IN PLANETARY ATMOSPHERES , 2013, 1309.6679.

[46]  W. V. Breugel,et al.  Imaging the Universe in Three Dimensions , 2000 .

[47]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[48]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[49]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[50]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[51]  Timothy D. Morton,et al.  THE RADIUS DISTRIBUTION OF PLANETS AROUND COOL STARS , 2013, 1303.3013.

[52]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[53]  Ichi Tanaka,et al.  RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE , 2012, 1210.4836.

[54]  S. Seager,et al.  ON THE METHOD TO INFER AN ATMOSPHERE ON A TIDALLY LOCKED SUPER EARTH EXOPLANET AND UPPER LIMITS TO GJ 876d , 2009, 0910.1505.

[55]  J. Bailey The Dawes Review 3: The Atmospheres of Extrasolar Planets and Brown Dwarfs , 2014, Publications of the Astronomical Society of Australia.

[56]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[57]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[58]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[59]  E. Ford,et al.  BENEFITS OF GROUND-BASED PHOTOMETRIC FOLLOW-UP FOR TRANSITING EXTRASOLAR PLANETS DISCOVERED WITH KEPLER AND CoRoT , 2009, 0907.5193.

[60]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[61]  Mercedes Lopez-Morales,et al.  FEASIBILITY STUDIES FOR THE DETECTION OF O2 IN AN EARTH-LIKE EXOPLANET , 2013, 1312.1585.

[62]  Kevin France,et al.  High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets , 2013, 1310.2590.

[63]  David A. Golimowski,et al.  ERRATUM: “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD” (2010, AJ, 139, 2679) , 2010, 1004.4002.

[64]  D. Kipping,et al.  Detection of visible light from the darkest world , 2011, 1108.2297.

[65]  Jürgen Wolf,et al.  THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS , 2013 .

[66]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[67]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[68]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[69]  A. Burrows Highlights in the study of exoplanet atmospheres , 2014, Nature.

[70]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[71]  Nicolas B. Cowan,et al.  Light curves of stars and exoplanets: estimating inclination, obliquity and albedo , 2013, 1304.6398.

[72]  T. Evans,et al.  An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO , 2013, 1307.2083.

[73]  D. Pollard,et al.  Atmospheric circulations of terrestrial planets orbiting low-mass stars , 2011 .

[74]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[75]  Aomawa L. Shields,et al.  The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. , 2013, Astrobiology.

[76]  Dorian S. Abbot,et al.  THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING , 2012, 1205.5034.

[77]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[78]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[79]  C. Hansen,et al.  Features in the broad-band eclipse spectra of exoplanets: signal or noise? , 2014, 1402.6699.

[80]  Jacob L. Bean,et al.  NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b , 2014, 1409.5336.

[81]  Kevin France,et al.  COMPUTING INTRINSIC LYα FLUXES OF F5 V TO M5 V STARS , 2013, 1301.5711.

[82]  Dorian S. Abbot,et al.  STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS , 2013, 1307.0515.

[83]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[84]  Bernhard Brandl,et al.  The fast spin-rotation of a young extra-solar planet , 2014 .

[85]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[86]  B. Smalley,et al.  Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18 , 2012, 1210.5585.

[87]  Alfred Krabbe,et al.  Observing Exoplanets with SOFIA , 2010 .

[88]  R. Haberle,et al.  Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. , 2011, Astrobiology.

[89]  Nikole K. Lewis,et al.  CONSTRAINTS ON THE ATMOSPHERIC CIRCULATION AND VARIABILITY OF THE ECCENTRIC HOT JUPITER XO-3b , 2014, 1407.1313.

[90]  K. Menou ATMOSPHERIC CIRCULATION AND COMPOSITION OF GJ1214b , 2011, 1109.1574.

[91]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[92]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[93]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[94]  J. Beaulieu,et al.  METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B? , 2010, 1007.0324.

[95]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[96]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[97]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[98]  Sara Seager,et al.  The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.

[99]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[100]  R. Pierrehumbert,et al.  WATER LOSS FROM TERRESTRIAL PLANETS WITH CO2-RICH ATMOSPHERES , 2013, 1306.3266.

[101]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[102]  Nikole K. Lewis,et al.  SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE , 2012, 1301.6763.

[103]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[104]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[105]  S. Seager,et al.  Toward Eclipse Mapping of Hot Jupiters , 2006, astro-ph/0612412.

[106]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[107]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[108]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[109]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[110]  J. Fortney,et al.  Resolving the Surfaces of Extrasolar Planets with Secondary Eclipse Light Curves , 2006, astro-ph/0601092.

[111]  B. Demory,et al.  UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS , 2013, 1309.5956.

[112]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[113]  D. James,et al.  Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life , 2014, 1406.7353.

[114]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[115]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[116]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[117]  R. Perna,et al.  OHMIC DISSIPATION IN THE ATMOSPHERES OF HOT JUPITERS , 2010, 1009.3273.

[118]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[119]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.