Broadband CPW Feed for Millimeter-Wave SIW-Based Antipodal Linearly Tapered Slot Antennas

To achieve broadband performances in the millimeter-wave range, antipodal linearly tapered slot antenna (ALTSA) designs with new combined substrate integrated waveguide (SIW) and regular coplanar waveguide (CPW) feeds are presented and studied. This feed structure eliminates the fabrication of air bridges in direct CPW-fed tapered slot antennas (TSAs). Two millimeter-wave design techniques are introduced for the selected 41–61 GHz and 90–120 GHz frequency ranges, demonstrating very good impedance match and nearly constant gain, beamwidth, and cross-polarization levels over bandwidths of 39% and 28%, respectively. The design procedure is validated by comparing simulated results with measurements performed on a 21–31 GHz (38% bandwidth) prototype. Very good agreement between measured and calculated performance characteristics is obtained with only cross-polarization levels slightly higher than predicted. The structural design parameters and dimensions of all three designs are given.

[1]  Li Bin,et al.  The research of broadband millimeter-wave Vivaldi array antenna using SIW technique , 2010, 2010 International Conference on Microwave and Millimeter Wave Technology.

[2]  Ke Wu,et al.  Design of a Monopulse Antenna Using a Dual V-Type Linearly Tapered Slot Antenna (DVLTSA) , 2008, IEEE Transactions on Antennas and Propagation.

[3]  P. J. Gibson The Vivaldi Aerial , 1979, 1979 9th European Microwave Conference.

[4]  Tan-Huat Chio,et al.  Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays , 2000 .

[5]  Kunio Sawaya,et al.  Broadband Fermi Antenna and its Application to MM-Wave Imaging , 2007 .

[6]  Bing-Hao Zeng,et al.  Modified Antipodal Fermi antenna with piecewise-linear approximation , 2010, 2010 International Conference on Applications of Electromagnetism and Student Innovation Competition Awards (AEM2C).

[7]  K. S. Yngvesson,et al.  The tapered slot antenna-a new integrated element for millimeter-wave applications , 1989 .

[8]  G. M. Rebeiz,et al.  Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates , 2002 .

[9]  K. S. Yngvesson,et al.  Coplanar waveguide transitions to slotline: design and microprobe characterization , 1993 .

[10]  L. Perregrini,et al.  Dispersion characteristics of substrate integrated rectangular waveguide , 2002, IEEE Microwave and Wireless Components Letters.

[11]  D. Deslandes Design equations for tapered microstrip-to-Substrate Integrated Waveguide transitions , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[12]  Yong-Jun An,et al.  High-gain planar tapered slot antenna for Ku-band applications , 2010, 2010 Asia-Pacific Microwave Conference.

[13]  K. Mizuno,et al.  A mm-wave tapered slot antenna with improved radiation pattern , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[14]  A. Elsherbini,et al.  Experimental development of a circularly polarized antipodal tapered slot antenna using SIW feed printed on thick substrate , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[15]  Xianming Qing,et al.  60-GHz antipodal Fermi antenna on PCB , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[16]  J. Bornemann,et al.  Linear tapered slot antenna with substrate integrated waveguide feed , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[17]  Wei Hong,et al.  Silicon based THz antenna and filter with MEMS process , 2011, 2011 International Workshop on Antenna Technology (iWAT).

[18]  Kunio Sawaya,et al.  High Gain Antipodal Fermi Antenna with Low Cross Polarization , 2011, IEICE Trans. Commun..

[19]  A. Elsherbini,et al.  A highly efficient Vivaldi antenna array design on thick substrate and fed by SIW structure with integrated GCPW feed , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[20]  T. Itoh,et al.  A new broadband coplanar waveguide to slotline transition , 1997, IEEE MTT-S International Microwave Symposium Digest.

[21]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[22]  P. Dewdney,et al.  Demonstration of a Dual-Polarized Phased-Array Feed , 2011, IEEE Transactions on Antennas and Propagation.

[23]  J. Bornemann,et al.  Return-loss investigation of the equivalent width of substrate-integrated waveguide circuits , 2011, 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies.

[24]  Jens Bornemann,et al.  New substrate-integrated to coplanar waveguide transition , 2011, 2011 41st European Microwave Conference.

[25]  Kai Chang,et al.  Ultra wideband exponentially-tapered antipodal Vivaldi antennas , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[26]  Ingo Wolff Design rules and realisation of coplanar circuits for communication applications , 1993, 1993 23rd European Microwave Conference.

[27]  Stefan Simion,et al.  Coplanar waveguide stub/filters on thin membranes and standard substrates , 1997, 1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings.

[28]  Shouyuan Shi,et al.  Modified Compact Antipodal Vivaldi Antenna for 4–50-GHz UWB Application , 2011, IEEE Transactions on Microwave Theory and Techniques.

[29]  T. L. Korzeniowski,et al.  Endfire tapered slot antennas on dielectric substrates , 1985 .