Transductive Gaussian Process Regression with Automatic Model Selection

In contrast to the standard inductive inference setting of predictive machine learning, in real world learning problems often the test instances are already available at training time. Transductive inference tries to improve the predictive accuracy of learning algorithms by making use of the information contained in these test instances. Although this description of transductive inference applies to predictive learning problems in general, most transductive approaches consider the case of classification only. In this paper we introduce a transductive variant of Gaussian process regression with automatic model selection, based on approximate moment matching between training and test data. Empirical results show the feasibility and competitiveness of this approach.

[1]  H. Luetkepohl The Handbook of Matrices , 1996 .

[2]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[3]  Christopher K. I. Williams Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.

[4]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[5]  Radford M. Neal Assessing Relevance determination methods using DELVE , 1998 .

[6]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[7]  Jason Weston,et al.  Transductive Inference for Estimating Values of Functions , 1999, NIPS.

[8]  Volker Tresp,et al.  A Bayesian Committee Machine , 2000, Neural Computation.

[9]  Anton Schwaighofer,et al.  Transductive and Inductive Methods for Approximate Gaussian Process Regression , 2002, NIPS.

[10]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[11]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[12]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[13]  Alexander J. Smola,et al.  Heteroscedastic Gaussian process regression , 2005, ICML.

[14]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[15]  Thomas Gärtner,et al.  Large-Scale Multiclass Transduction , 2005, NIPS.

[16]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[17]  Alexander J. Smola,et al.  Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..

[18]  Samy Bengio,et al.  Semi-Supervised Kernel Methods for Regression Estimation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[19]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[20]  Finnegan Southey,et al.  Metric-Based Approaches for Semi-Supervised Regression and Classification , 2006, Semi-Supervised Learning.

[21]  Thomas Gärtner,et al.  Efficient co-regularised least squares regression , 2006, ICML.

[22]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[23]  Alexander J. Smola,et al.  Unifying Divergence Minimization and Statistical Inference Via Convex Duality , 2006, COLT.

[24]  Nikos A. Vlassis,et al.  Gaussian fields for semi-supervised regression and correspondence learning , 2006, Pattern Recognit..