Transductive Gaussian Process Regression with Automatic Model Selection
暂无分享,去创建一个
Thomas Gärtner | Alexander J. Smola | Quoc V. Le | Yasemin Altun | Alex Smola | Y. Altun | T. Gärtner | Thomas Gärtner
[1] H. Luetkepohl. The Handbook of Matrices , 1996 .
[2] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[3] Christopher K. I. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.
[4] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[5] Radford M. Neal. Assessing Relevance determination methods using DELVE , 1998 .
[6] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[7] Jason Weston,et al. Transductive Inference for Estimating Values of Functions , 1999, NIPS.
[8] Volker Tresp,et al. A Bayesian Committee Machine , 2000, Neural Computation.
[9] Anton Schwaighofer,et al. Transductive and Inductive Methods for Approximate Gaussian Process Regression , 2002, NIPS.
[10] Alexander J. Smola,et al. Kernels and Regularization on Graphs , 2003, COLT.
[11] J. Lafferty,et al. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.
[12] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[13] Alexander J. Smola,et al. Heteroscedastic Gaussian process regression , 2005, ICML.
[14] Xiaojin Zhu,et al. --1 CONTENTS , 2006 .
[15] Thomas Gärtner,et al. Large-Scale Multiclass Transduction , 2005, NIPS.
[16] Alexander Zien,et al. Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.
[17] Alexander J. Smola,et al. Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..
[18] Samy Bengio,et al. Semi-Supervised Kernel Methods for Regression Estimation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[19] Alexander Zien,et al. Semi-Supervised Learning , 2006 .
[20] Finnegan Southey,et al. Metric-Based Approaches for Semi-Supervised Regression and Classification , 2006, Semi-Supervised Learning.
[21] Thomas Gärtner,et al. Efficient co-regularised least squares regression , 2006, ICML.
[22] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[23] Alexander J. Smola,et al. Unifying Divergence Minimization and Statistical Inference Via Convex Duality , 2006, COLT.
[24] Nikos A. Vlassis,et al. Gaussian fields for semi-supervised regression and correspondence learning , 2006, Pattern Recognit..