Spatial Microscopic Actuations of Shallow Conical Shell Sections

In recent years there has been an interest in distributed control of shell structures because of its extensive applications in high performance structural systems. Conical shells are relevant to components of structural systems such as engine nozzles, interstage joints, satellite–rocket joints, load carrying structures for solid rocket motor cases, etc. In this paper we evaluate the spatially distributed microscopic control characteristics of distributed actuator patches laminated on conical shell surfaces. Piezoelectric materials have always been utilized for precision distributed control applications due to their converse effect. The resultant control forces and micro-control actions induced by distributed piezoelectric actuators depend on applied voltages, geometrical (e.g. spatial segmentation and shape) and material (i.e. various actuator materials) properties. Mathematical models and modal domain governing equations of the conical shell section laminated with distributed actuator patches are presented first, followed by the formulations of distributed control forces and micro-control actions, which can be refined to longitudinal and circumferential membrane/bending control components. We then evaluate the spatially distributed electromechanical microscopic actuation characteristics and control effects resulting from various longitudinal/circumferential actions of actuator patches.