Searching for chameleon-like scalar fields with the ammonia method , II. Mapping of cold molecular cores in NH3 and HC3N lines

Context. In our previous work we found a statistically significant offset ΔV ≈ 27 m s −1 between the radial velocities of the HC3N J = 2− 1a nd NH 3 (J,K) = (1, 1) transitions observed in molecular cores from the Milky Way. This may indicate that the electron-toproton mass ratio, μ ≡ me/mp, increases by ∼3 × 10 −8 when measured under interstellar conditions with matter densities of more than 10 orders of magnitude lower than with laboratory (terrestrial) environments. Aims. We map four molecular cores L1498, L1512, L1517, and L1400K selected from our previous sample to estimate systematic effects in ΔV due to possible velocity gradients or other sources across the cloud and to check the reproducibility of the velocity offsets on the year-to-year time base. Methods. We use the ammonia method, which involves observations of inversion lines of NH3 complemented by rotational lines of other molecular species and allows us to test changes in μ caused by a higher sensitivity of the inversion frequencies to the μ-variation than with the rotational frequencies. Results. We find that in two cores L1498 and L1512 the NH3 (1, 1) and HC3N (2–1) transitions closely trace the same material and show an offset of ΔV ≡ Vlsr(HC3N) – Vlsr(NH3) = 26.9 ± 1.2stat ± 3.0sys ms −1 throughout the entire clouds. The offsets measured in L1517B and L1400K are 46.9 ± 3.3stat ± 3.0sys ms −1 and 8.5 ± 3.4stat ± 3.0sys ms −1 , respectively, and are, probably, subject to Doppler shifts due to spatial segregation of HC3 Nv ersus NH 3. We also determine frequency shifts caused by external electric and magnetic fields and by the cosmic black body radiation-induced Stark effect and find that they are less than 1 m s −1 . Conclusions. The measured velocity offset in L1498 and L1512, when interpreted in terms of Δμ/μ ≡ (μobs − μlab)/μlab ,g ivesΔμ/μ = (26 ± 1stat ± 3sys) × 10 −9 . Although this estimate is based on a limited number of sources and molecular pairs used in the ammonia method, it demonstrates a high accuracy with which the fundamental physics can be tested by means of radio observations. The non-zero signal in Δμ/μ should be further examined as larger and more accurate data sets become available.

[1]  P. Molaro,et al.  Searching for Chameleon-Like Scalar Fields , 2010, 1012.0642.

[2]  P. Brax,et al.  Solar Chameleons , 2010, 1004.1846.

[3]  Canada.,et al.  Keck Telescope Constraint on Cosmological Variation of the Proton-to-Electron Mass Ratio , 2010, 1001.4078.

[4]  J. Steffen,et al.  Constraining chameleon field theories using the GammeV afterglow experiments , 2009, 0911.3906.

[5]  M. Kozlov,et al.  Sensitivity of microwave spectra of deuterated ammonia to the variation of the electron-to-proton mass ratio , 2009, 0908.2983.

[6]  Rodger I. Thompson,et al.  AN OBSERVATIONAL DETERMINATION OF THE PROTON TO ELECTRON MASS RATIO IN THE EARLY UNIVERSE , 2009, Proceedings of the International Astronomical Union.

[7]  A. Davis,et al.  Effect of a chameleon scalar field on the cosmic microwave background , 2009, 0907.2672.

[8]  P. Molaro,et al.  Stringent bounds to spatial variations of the electron-to-proton mass ratio in the Milky Way , 2009, 0907.1192.

[9]  M. Kozlov Λ -doublet spectra of diatomic radicals and their dependence on fundamental constants , 2009, 0905.1714.

[10]  J. Xavier Prochaska,et al.  WAVELENGTH ACCURACY OF THE KECK HIRES SPECTROGRAPH AND MEASURING CHANGES IN THE FINE STRUCTURE CONSTANT , 2009, 0904.4725.

[11]  J. Ott,et al.  The density, the cosmic microwave background, and the proton-to-electron mass ratio in a cloud at redshift 0.9 , 2009, 0904.3081.

[12]  C. Savoy,et al.  SQCD inflation & SUSY breaking , 2009, 0902.0972.

[13]  V. Flambaum,et al.  Ultracold molecules: new probes on the variation of fundamental constants , 2009, 0901.3846.

[14]  W. Ubachs,et al.  Prospects for precision measurements on ammonia molecules in a fountain , 2008 .

[15]  B. Klein,et al.  Submillimeter water and ammonia absorption by the peculiar z ≈ 0.89 interstellar medium in the gravitational lens of the PKS 1830−211 system , 2008, 0810.2782.

[16]  C. Burrage,et al.  Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields , 2008, 0809.1763.

[17]  R. Carswell,et al.  Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio. , 2008, Physical review letters.

[18]  M. Murphy,et al.  Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe , 2008, Science.

[19]  Takeshi Sakai,et al.  A New 100-GHz Band Front-End System with a Waveguide-Type Dual-Polarization Sideband-Separating SIS Receiver for the NRO 45-m Radio Telescope , 2008, 0804.0480.

[20]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[21]  A Amy-Klein,et al.  Stability of the proton-to-electron mass ratio. , 2008, Physical review letters.

[22]  N. Sakai,et al.  A Molecular Line Observation toward Massive Clumps Associated with Infrared Dark Clouds , 2008, 0802.3030.

[23]  P. Molaro,et al.  Mid- and far-infrared fine-structure-line sensitivities to hypothetical variability of the fine-structure constant , 2008, 0802.0269.

[24]  P. Petitjean,et al.  Editorial Note: Srianand etal. Reply [Phys. Rev. Lett. 99, 239002 (2007)] , 2008 .

[25]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[26]  P. Molaro,et al.  A new approach for testing variations of fundamental constants over cosmic epochs using FIR fine-structure lines , 2007, 0712.2890.

[27]  J. Foster,et al.  An Ammonia Spectral Atlas of Dense Cores in Perseus , 2007, 0711.0231.

[28]  M. Gerin,et al.  The Excitation of N2H+ in Interstellar Molecular Clouds. II. Observations , 2007 .

[29]  K. Olive,et al.  Environmental Dependence of Masses and Coupling Constants , 2007, 0709.3825.

[30]  USA,et al.  The Nature of the Dense Core Population in the Pipe Nebula: A Survey of NH3, CCS, and HC5N Molecular Line Emission , 2007, 0708.3660.

[31]  V. Flambaum,et al.  Limit on the cosmological variation of mp/me from the inversion spectrum of ammonia. , 2007, Physical review letters.

[32]  Hyung-Mok Lee,et al.  Velocity Distribution of Collapsing Starless Cores, L694-2 and L1197 , 2007, astro-ph/0702330.

[33]  University of Cambridge,et al.  Revision of VLT/UVES constraints on a varying fine-structure constant , 2006, astro-ph/0612407.

[34]  D. Mota,et al.  Evading equivalence principle violations, cosmological, and other experimental constraints in scalar field theories with a strong coupling to matter , 2006, hep-ph/0608078.

[35]  Durham,et al.  The abundances of nitrogen-containing molecules during pre-protostellar collapse , 2006, astro-ph/0607114.

[36]  Rolf Güsten,et al.  A new generation of spectrometers for radio astronomy: fast Fourier transform spectrometer , 2006, SPIE Astronomical Telescopes + Instrumentation.

[37]  P. Caselli,et al.  On the internal structure of starless cores II. A molecular survey of L1498 and L1517B , 2006, astro-ph/0605513.

[38]  P. Petitjean,et al.  Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra. , 2006, Physical review letters.

[39]  Cambridge,et al.  The kinetic temperature of a molecular cloud at redshift 0.7: ammonia in the gravitational lens B0218+357 , 2005, astro-ph/0508204.

[40]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[41]  P. Molaro,et al.  VLT/UVES constraints on the cosmological variability of the fine-structure constant , 2005 .

[42]  G. Meijer,et al.  Decelerated molecular beams for high-resolution spectroscopy , 2004 .

[43]  A. Walsh,et al.  Star Formation on the Move? , 2004 .

[44]  C. W. Lee,et al.  Probing the Evolutionary Status of Starless Cores through N2H+ and N2D+ Observations , 2004, astro-ph/0409529.

[45]  J. Khoury,et al.  Detecting dark energy in orbit: The cosmological chameleon , 2004, astro-ph/0408415.

[46]  Anthony W. Thomas,et al.  Limits on variations of the quark masses, QCD scale, and fine structure constant , 2004 .

[47]  P. Myers,et al.  A CO Survey toward Starless Cores , 2004 .

[48]  C. Walmsley,et al.  The NH3 / N2H+ abundance ratio in dense cores , 2004 .

[49]  P. Caselli,et al.  On the internal structure of starless cores - I. Physical conditions and the distribution of CO, CS, N$\mathsf{_2}$H$\mathsf{^+}$, and NH$\mathsf{_3}$ in L1498 and L1517B , 2004 .

[50]  P. Petitjean,et al.  Probing the cosmological variation of the fine - structure constant: Results based on VLT - UVES sample , 2004, astro-ph/0401094.

[51]  J. Prochaska,et al.  Constraining variations in the fine-structure constant, quark masses and the strong interaction , 2003, astro-ph/0310318.

[52]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[53]  J. Khoury,et al.  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[54]  J. Barrow,et al.  Local and global variations of the fine-structure constant , 2003, astro-ph/0309273.

[55]  Jeong-Eun Lee,et al.  Chemistry and Dynamics in Pre-protostellar Cores , 2002, astro-ph/0212178.

[56]  M. Dine,et al.  Time variations in the scale of grand unification , 2002, hep-ph/0209134.

[57]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[58]  D. Wesolek,et al.  An Experimental Investigation of Collisions of NH3 with Para-H2 at the Temperatures of Cold Molecular Clouds , 2002 .

[59]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[60]  H Germany,et al.  Systematic Molecular Differentiation in Starless Cores , 2001, astro-ph/0112487.

[61]  P. Langacker,et al.  Implications of gauge unification for time variation of the fine structure constant , 2001, hep-ph/0112233.

[62]  X. Calmet,et al.  The cosmological evolution of the nucleon mass and the electroweak coupling constants , 2001, hep-ph/0112110.

[63]  W. Langer,et al.  Measuring the Magnetic Field Strength in L1498 with Zeeman-splitting Observations of CCS , 2001 .

[64]  Mitaka,et al.  A new constraint on cosmological variability of the proton-to-electron mass ratio , 2001, astro-ph/0106194.

[65]  P. Molaro,et al.  Molecular Hydrogen, Deuterium, and Metal Abundances in the Damped Lyα System at zabs = 3.025 toward Q0347–3819 , 2001, astro-ph/0105529.

[66]  P. Myers,et al.  A Survey for Infall Motions toward Starless Cores. II. CS (2-1) and N2H+ (1-0) Mapping Observations , 2001, astro-ph/0105515.

[67]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[68]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[69]  P. Myers,et al.  A Survey of Infall Motions toward Starless Cores. I. CS (2-1) and N2H+ (1-0) Observations , 1999, astro-ph/9906468.

[70]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[71]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[72]  P. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.

[73]  I. Mazets,et al.  New aspects of absorption line formation in intervening turbulent clouds — II. Monte Carlo simulation of interstellar H+D Lyα absorption profiles , 1997 .

[74]  P. Caselli,et al.  Radio-astronomical Spectroscopy of the Hyperfine Structure of N2H+ , 1995 .

[75]  T. Millar,et al.  Observations of deuterated cyanoacetylene in dark clouds , 1994 .

[76]  G. Fuller,et al.  Thermal Material in Dense Cores: A New Narrow-Line Probe and Technique of Temperature Determination , 1993 .

[77]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[78]  Masatoshi Ohishi,et al.  A survey of CCS, HC3N, HC5N, and NH3 toward dark cloud cores and their production chemistry , 1992 .

[79]  K. Kawaguchi,et al.  Rotational spectrum of the CCS radical studied by laboratory microwave spectroscopy and radio-astronomical observations , 1990 .

[80]  P. Myers,et al.  A survey for dense cores in dark clouds , 1989 .

[81]  C. Walmsley,et al.  Relative abundances of cyanogenated molecules , 1984 .

[82]  P. Myers,et al.  Dense cores in dark clouds. IV: HC5N observations , 1983 .

[83]  R. Linke,et al.  Dense cores in dark clouds. I. CO observations and column densities of high-extinction regions , 1983 .

[84]  W. Wing,et al.  ACCURATE CALCULATION OF DYNAMIC STARK SHIFTS AND DEPOPULATION RATES OF RYDBERG ENERGY LEVELS INDUCED BY BLACKBODY RADIATION. HYDROGEN, HELIUM, AND ALKALI-METAL ATOMS , 1981 .

[85]  P. Goldsmith,et al.  Molecular cooling and thermal balance of dense interstellar clouds , 1978 .

[86]  E. Kollberg,et al.  Hyperfine structure of interstellar ammonia in dark clouds. , 1977 .

[87]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[88]  R. Dickman A survey of carbon monoxide emission in dark clouds. [cosmic dust , 1975 .

[89]  Jon T. Hougen,et al.  Reinterpretation of Molecular Beam Hyperfine Data for 14NH3 and 15NH3 , 1972 .

[90]  S. Kukolich Measurement of ammonia hyperfine structure with a two-cavity maser , 1967 .

[91]  D. Reimers,et al.  Probing the variability of the fine-structure constant with the VLT/UVES , 2003, astro-ph/0311280.

[92]  Alan F. M. Moorwood,et al.  Report on the Conference Science with the VLT in the ELT Era , 2007 .

[93]  K. Rice,et al.  Protostars and Planets V , 2005 .

[94]  William H. Press,et al.  Numerical recipes in C , 2002 .

[95]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[96]  S. Yamamoto,et al.  Microwave spectra and electric dipole moments for low-J levels of interstellar radicals : SO, C2S, C3S, c-HC3, CH2CC, and c-C3H2 , 1992 .

[97]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[98]  A. C. Aitken IV.—On Least Squares and Linear Combination of Observations , 1936 .