Multifunctional phosphate-based inorganic-organic hybrid nanoparticles.

Phosphate-based inorganic-organic hybrid nanoparticles (IOH-NPs) with the general composition [M](2+)[Rfunction(O)PO3](2-) (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3](2-) is a fluorescent dye anion ([RdyeOPO3](2-)), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO](2+)[PUP](2-), [ZrO](2+)[MFP](2-), [ZrO](2+)[RRP](2-), and [ZrO](2+)[DUT](2-) (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3](2-)), drug transport and release of anti-inflammatory ([ZrO](2+)[BMP](2-)) and antitumor agents ([ZrO](2+)[FdUMP](2-)) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5'-fluoro-2'-deoxyuridine 5'-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO](2+)[BMP](2-)0.996[DUT](2-)0.004. Merging of functional anions, in general, results in [ZrO](2+)([RdrugOPO3]1-x[RdyeOPO3]x)(2-) nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO](2+)[RaminePO3](2-) IOH-NPs, finally, show CO2 sorption (up to 180 mg g(-1)) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP](2-), 1-aminoethyl phosphonate [1AEP](2-), 2-aminoethyl phosphonate [2AEP](2-), aminopropyl phosphonate [APP](2-), and aminobutyl phosphonate [ABP](2-). All [M](2+)[Rfunction(O)PO3](2-) IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.

[1]  Michael J Sailor,et al.  Hybrid Nanoparticles for Detection and Treatment of Cancer , 2012, Advanced materials.

[2]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[3]  Juan L. Vivero-Escoto,et al.  Silica-based nanoprobes for biomedical imaging and theranostic applications. , 2012, Chemical Society reviews.

[4]  Hsing-lin Wang,et al.  Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers. , 2014, Chemical Society reviews.

[5]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[6]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[7]  C. Shearer,et al.  Application and Future Challenges of Functional Nanocarbon Hybrids , 2014, Advanced materials.

[8]  C. Petit,et al.  Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials , 2014 .

[9]  I. Mbawuike,et al.  MH‐S, a Murine Alveolar Macrophage Cell Line: Morphological, Cytochemical, and Functional Characteristics , 1989, Journal of leukocyte biology.

[10]  S. Maier,et al.  Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability , 2012, Nature Communications.

[11]  Oliver Benson,et al.  Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.

[12]  J. Joo,et al.  Hybrid nanostructures using pi-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. , 2010, Chemical Society reviews.

[13]  Liang-Shih Fan,et al.  Clean coal conversion processes – progress and challenges , 2008 .

[14]  Galo J. A. A. Soler-Illia,et al.  Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. , 2011, Chemical Society reviews.

[15]  Frederic Chaput,et al.  Optical Properties of Functional Hybrid Organic–Inorganic Nanocomposites , 2003 .

[16]  C. Feldmann,et al.  ZrO(HPO(4))(1-x)(FMN)(x): quick and easy synthesis of a nanoscale luminescent biomarker. , 2010, Angewandte Chemie.

[17]  R. Schinazi,et al.  Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs , 2014, Chemical reviews.

[18]  V. Zeleňák,et al.  Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties , 2008 .

[19]  C. Feldmann,et al.  Magnesium aminoethyl phosphonate (Mg(AEP)(H2O)): an inorganic-organic hybrid nanomaterial with high CO2:N2 sorption selectivity. , 2012, Chemical communications.

[20]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[21]  Mark E. Davis Fighting cancer with nanoparticle medicines―The nanoscale matters , 2012 .

[22]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[23]  Ting Xu,et al.  Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. , 2013, Chemical Society reviews.

[24]  M. Stevens,et al.  Bioresponsive peptide-inorganic hybrid nanomaterials. , 2010, Chemical Society reviews.

[25]  Rui Tang,et al.  Stability of Quantum Dots in Live Cells , 2011, Nature chemistry.

[26]  Peter X Ma,et al.  Nanostructured Biomaterials for Regeneration , 2008, Advanced functional materials.

[27]  V. Muzykantov,et al.  Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities , 2012, Science.

[28]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[29]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[30]  Hakho Lee,et al.  A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. , 2013, Nature nanotechnology.

[31]  S. Little,et al.  Biomimetic Delivery with Micro‐ and Nanoparticles , 2012, Advanced materials.

[32]  A. Hayes Principles and methods of toxicology , 1982 .

[33]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[34]  R. Advíncula,et al.  Hybrid Semiconductor Nanoparticles: π-Conjugated Ligands and Nanostructured Films , 2011 .

[35]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[36]  Jianlin Shi On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. , 2013, Chemical reviews.

[37]  Yongsheng Liu,et al.  Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. , 2013, Chemical Society reviews.

[38]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.