Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation
暂无分享,去创建一个
[1] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[2] Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .
[3] J. Moser,et al. An extension of a result by Dinaburg and Sinai on quasi-periodic potentials , 1984 .
[4] Y. Sinai,et al. The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .
[5] H. Rüssmann. ON THE ONE‐DIMENSIONAL SCHRÖDINGER EQUATION WITH A QUASI‐PERIODIC POTENTIAL , 1980 .
[6] J. Moser,et al. The rotation number for almost periodic potentials , 1983 .
[7] F. Delyon,et al. Purely absolutely continuous spectrum for almost Mathieu operators , 1989 .
[8] P. Deift,et al. Almost periodic Schrödinger operators , 1983 .
[9] T. Spencer. Ergodic Schrödinger Operators , 1990 .
[10] Harry Dym,et al. Gaussian processes, function theory, and the inverse spectral problem , 1976 .
[11] M. Brin. Topological transitivity of one class of dynamic systems and flows of frames on manifolds of negative curvature , 1975 .
[12] F. Rellich,et al. Eigenwerttheorie gewohnlicher Differentialgleichungen , 1976 .
[13] S. Kotani. Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .