A Comparative Study of Different Order Relations of Intervals

The objective of this paper is to study the existing denitions of interval order relations for comparing intervals in the context of decisionmaking problems. First, a detailed survey of existing denitions is presented, along with the advantages and drawbacks of each. Then, a global comparison is performed, taking the best order relations from each group. Finally, a conclusion is drawn about the best order relations.

[1]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[2]  Z. Kulpa DIAGRAMMATIC REPRESENTATION FOR A SPACE OF INTERVALS , 1997 .

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  V. I. Levin,et al.  Ordering of Intervals and Optimization Problems with Interval Parameters , 2004 .

[5]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[6]  Sukhamay Kundu,et al.  Min-transitivity of fuzzy leftness relationship and its application to decision making , 1997, Fuzzy Sets Syst..

[7]  R. Yager An introduction to applications of possibility theory (+ commentaries by L.A. Zadeh, W. Bandler, T. Saaty, A. Kandel, D. Dubois & H. Prade, R.M. Tong and M. Kochen) , 1982 .

[8]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[9]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[10]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[11]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[12]  Zenon Kulpa A diagrammatic approach to investigate interval relations , 2006, J. Vis. Lang. Comput..

[13]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[14]  Zenon Kulpa,et al.  Diagrammatic representation for interval arithmetic , 2001 .

[15]  B. Hu,et al.  A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers , 2006 .

[16]  Sanat Kumar Mahato,et al.  Interval-Arithmetic-Oriented Interval Computing Technique for Global Optimization , 2006 .

[17]  Zhang Quan,et al.  A Ranking Approach for Interval Numbers in Uncertain Multiple Attribute Decision Making Problems , 1999 .

[18]  Pavel V. Sevastjanov,et al.  Two-objective method for crisp and fuzzy interval comparison in optimization , 2006, Comput. Oper. Res..