Fried Binary Embedding for High-Dimensional Visual Features

Most existing binary embedding methods prefer compact binary codes (b-dimensional) to avoid high computational and memory cost of projecting high-dimensional visual features (d-dimensional, b

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Heng Tao Shen,et al.  Hashing for Similarity Search: A Survey , 2014, ArXiv.

[4]  Florent Perronnin,et al.  High-dimensional signature compression for large-scale image classification , 2011, CVPR 2011.

[5]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Junsong Yuan,et al.  Efficient Object Instance Search Using Fuzzy Objects Matching , 2017, AAAI.

[7]  Sanjiv Kumar,et al.  Learning Binary Codes for High-Dimensional Data Using Bilinear Projections , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[9]  J. C. Gower,et al.  Projection Procrustes problems , 2004 .

[10]  Shih-Fu Chang,et al.  Fast Orthogonal Projection Based on Kronecker Product , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[12]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[13]  Le Song,et al.  Deep Fried Convnets , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Wen Gao,et al.  To Project More or to Quantize More: Minimize Reconstruction Bias for Learning Compact Binary Codes , 2016, IJCAI.

[15]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[16]  Alexander J. Smola,et al.  Fastfood: Approximate Kernel Expansions in Loglinear Time , 2014, ArXiv.

[17]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[18]  Junsong Yuan,et al.  HOPE: Hierarchical Object Prototype Encoding for Efficient Object Instance Search in Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Junsong Yuan,et al.  From Keyframes to Key Objects: Video Summarization by Representative Object Proposal Selection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[21]  Jian Sun,et al.  Sparse projections for high-dimensional binary codes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[23]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[25]  Junsong Yuan,et al.  Query Adaptive Instance Search using Object Sketches , 2016, ACM Multimedia.

[26]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[27]  Shih-Fu Chang,et al.  Circulant Binary Embedding , 2014, ICML.

[28]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.