Compactly Supported Tight Wavelet Frames and Orthonormal Wavelets of Exponential Decay with a General Dilation Matrix

Tight wavelet frames and orthonormal wavelet bases with a general dilation matrix have applications in many areas. In this paper, for any d × d dilation matrix M , we demonstrate in a constructive way that we can construct compactly supported tight M -wavelet frames and orthonormal M -wavelet bases in L2(R) of exponential decay, which are derived from compactly supported M -refinable functions, such that they can have both arbitrarily high smoothness and any preassigned order of vanishing moments. This paper improves several results in [1, 2, 13, 25, 29].

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[2]  I. Daubechies,et al.  The Canonical Dual Frame of a Wavelet Frame , 2002 .

[3]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[4]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[5]  Frame Wavelet Sets in R , 2022 .

[6]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[7]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[8]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[9]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[10]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[11]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[12]  Marcin Bownik The construction ofr-regular wavelets for arbitrary dilations , 2001 .

[13]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[14]  B. Han On Dual Wavelet Tight Frames , 1995 .

[15]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[16]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[17]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[18]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[19]  Bin Han,et al.  Symmetry Property and Construction of Wavelets With a General Dilation Matrix , 2001 .

[20]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..

[21]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[22]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[23]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[24]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[25]  Charles K. Chui,et al.  Bessel Sequences and Affine Frames , 1993 .

[26]  A. Ron,et al.  Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .

[27]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .