Discrete Transparent Boundary Conditions for Wide Angle Parabolic Equations in Underwater Acoustics

This paper is concerned with transparent boundary conditions (TBCs) for wide angle “parabolic” equations (WAPEs) in the application to underwater acoustics (assuming cylindrical symmetry). Existing discretizations of these TBCs introduce slight numerical reflections at this artificial boundary and also render the overall Crank?Nicolson finite difference method only conditionally stable. Here, a novel discrete TBC is derived from the fully discretized whole-space problem that is reflection-free and yields an unconditionally stable scheme. While we shall assume a uniform discretization in range, the interior depth discretization (i.e. in the water column) may be nonuniform, and we shall discuss strategies for the “best exterior discretization” (i.e. in the sea bottom). The superiority of the new discrete TBC over existing discretizations is illustrated on several benchmark problems. In the literature different WAPEs (or WAPE and the standard “parabolic” equation) have been coupled in the water and the sea bottom. We analyze under which conditions this yields a hybrid model that is conservative for the acoustic field.

[1]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[2]  Michael I. Taroudakis,et al.  A new method for a realistic treatment of the sea bottom in the parabolic approximation , 1992 .

[3]  Brian Wetton,et al.  One‐way wave equations for seismoacoustic propagation in elastic waveguides , 1990 .

[4]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[5]  Thomas A. Manteuffel,et al.  The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .

[6]  Joseph B. Keller,et al.  Exact and asymptotic representations of the sound field in a stratified ocean , 1977 .

[7]  L. Fishman Exact and operator rational approximate solutions of the Helmholtz, Weyl composition equation in underwater acoustics−The quadratic profile , 1992 .

[8]  Ding Lee,et al.  Finite‐difference solution to the parabolic wave equation , 1981 .

[9]  L. Trefethen,et al.  Wide-angle one-way wave equations. , 1988, The Journal of the Acoustical Society of America.

[10]  P. Schultz,et al.  Fundamentals of geophysical data processing , 1979 .

[11]  Michael D. Collins,et al.  Applications and time‐domain solution of higher‐order parabolic equations in underwater acoustics , 1989 .

[12]  L. D. Menza,et al.  Conditions aux limites transparentes et artificielles pour l'équation de Schrödinger en dimension 1 d'espace , 1995 .

[13]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[14]  Frensley,et al.  Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. , 1994, Physical review. B, Condensed matter.

[15]  Ding Lee,et al.  A finite‐difference treatment of interface conditions for the parabolic wave equation: The irregular interface , 1982 .

[16]  M. D. Collins A split‐step Padé solution for the parabolic equation method , 1993 .

[17]  Frank Schmidt,et al.  Discrete transparent boundary conditions for the numerical solution of Fresnel's equation , 1995 .

[18]  D. E. Amos,et al.  A remark on Algorithm 644: “A portable package for Bessel functions of a complex argument and nonnegative order” , 1995, TOMS.

[19]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[20]  G. E. Warnaka A different look at the anechoic wedge , 1982 .

[21]  Björn Engquist,et al.  Parabolic wave equation approxi-mations in heterogeneous media , 1988 .

[22]  Michael D. Collins,et al.  A higher‐order parabolic equation for wave propagation in an ocean overlying an elastic bottom , 1989 .

[23]  Frank Schmidt,et al.  Discrete transparent boundary conditions for Schrödinger-type equations , 1997 .

[24]  Dongwoo Sheen,et al.  FREQUENCY DOMAIN TREATMENT OF ONE-DIMENSIONAL SCALAR WAVES , 1993 .

[25]  John Lagnese General Boundary Value Problems for Differential Equations of Sobolev Type , 1972 .

[26]  Georgios E. Zouraris,et al.  Error Estimates for Finite Difference Methods for a Wide Angle Parabolic Equation , 1996 .

[27]  Robert Vichnevetsky,et al.  Wave propagation and reflection in irregular grids for hyperbolic equations , 1987 .

[28]  W. Kuperman,et al.  Consistency Tests of Acoustic Propagation Models , 1983 .

[29]  D. E. Amos Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.

[30]  Higher-Order and Elastic Parabolic Equations for Wave Propagation in the Ocean , 1990 .

[31]  David J. Thomson Wide-angle parabolic equation solutions to two range-dependent benchmark problems , 1990 .

[32]  S. T. McDaniel,et al.  Ocean Acoustic Propagation by Finite Difference Methods , 1988 .

[33]  Jon F. Claerbout,et al.  Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure , 1970 .

[34]  Donald E. Amos,et al.  Remark on algorithm 644 , 1990, TOMS.

[35]  R. Greene The rational approximation to the acoustic wave equation with bottom interaction , 1984 .

[36]  Robert R. Greene,et al.  A high‐angle one‐way wave equation for seismic wave propagation along rough and sloping interfaces , 1985 .

[37]  David J. Thomson,et al.  AN EXACT RADIATION CONDITION FOR USE WITH THE A POSTERIORI PE METHOD , 1994 .

[38]  Paola Pietra,et al.  Weak limits of finite difference schemes for Schroedinger-type equations , 1997 .

[39]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.