Sparse Recovery by Non-convex Optimization -- Instance Optimality

Abstract In this note, we address the theoretical properties of Δ p , a class of compressed sensing decoders that rely on l p minimization with 0 p 1 to recover estimates of sparse and compressible signals from incomplete and inaccurate measurements. In particular, we extend the results of Candes, Romberg and Tao (2006) [3] and Wojtaszczyk (2009) [30] regarding the decoder Δ 1 , based on l 1 minimization, to Δ p with 0 p 1 . Our results are two-fold. First, we show that under certain sufficient conditions that are weaker than the analogous sufficient conditions for Δ 1 the decoders Δ p are robust to noise and stable in the sense that they are ( 2 , p ) instance optimal for a large class of encoders. Second, we extend the results of Wojtaszczyk to show that, like Δ 1 , the decoders Δ p are ( 2 , 2 ) instance optimal in probability provided the measurement matrix is drawn from an appropriate distribution.

[1]  Rémi Gribonval,et al.  On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries , 2004, ICA.

[2]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[3]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[4]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[5]  Joel A. Tropp,et al.  Recovery of short, complex linear combinations via /spl lscr//sub 1/ minimization , 2005, IEEE Transactions on Information Theory.

[6]  E. Berg,et al.  In Pursuit of a Root , 2007 .

[7]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[8]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[9]  Davies Rémi Gribonval Restricted Isometry Constants Where Lp Sparse Recovery Can Fail for 0 , 2008 .

[10]  Pascal Frossard,et al.  Efficient image representation by anisotropic refinement in matching pursuit , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[11]  Yehoram Gordon,et al.  Local structure theory for quasi-normed spaces , 1994 .

[12]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[13]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[14]  P. Wojtaszczyk,et al.  Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing , 2010, Found. Comput. Math..

[15]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[16]  Pierre Vandergheynst,et al.  A simple test to check the optimality of a sparse signal approximation , 2006, Signal Process..

[17]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[18]  Pascal Frossard,et al.  Low-rate and flexible image coding with redundant representations , 2006, IEEE Transactions on Image Processing.

[19]  Pascal Frossard,et al.  L OW RATE AND SCALABLE IMAGE CODING WITH REDUNDANT REPRESENTATIONS , 2004 .

[20]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .

[21]  A. Litvak,et al.  Euclidean projections of a p-convex body , 2000 .

[22]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[23]  Rémi Gribonval,et al.  Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.

[24]  N. Tenney Peck Banach-Mazur distances and projections onp-convex speces , 1981 .

[25]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[27]  Rayan Saab,et al.  Stable sparse approximations via nonconvex optimization , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[29]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[30]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[31]  Pierre Vandergheynst,et al.  A simple test to check the optimality of sparse signal approximations , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..