Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

Galloway-Mowat syndrome (GMS) is a neurodevelopmental disorder characterized by microcephaly, cerebellar hypoplasia, nephrosis, and profound intellectual disability. Jinks et al. extend the GMS spectrum by identifying a novel nephrocerebellar syndrome with selective striatal cholinergic interneuron loss and complete lateral geniculate nucleus delamination, caused by a frameshift mutation in WDR73.

[1]  S. Engelmann,et al.  A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. , 2015, Journal of the American Society of Nephrology : JASN.

[2]  W. Chung,et al.  Spectrum of Neuropathophysiology in Spinal Muscular Atrophy Type I , 2015, Journal of neuropathology and experimental neurology.

[3]  Yang Wang,et al.  WDSPdb: a database for WD40-repeat proteins , 2014, Nucleic Acids Res..

[4]  E. Roach,et al.  Tuberous sclerosis complex. , 2015, Handbook of clinical neurology.

[5]  N. Boddaert,et al.  Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. , 2014, American Journal of Human Genetics.

[6]  J. Schmahmann,et al.  Cognitive phenotype in ataxia-telangiectasia. , 2014, Pediatric neurology.

[7]  Jian-Fu Chen,et al.  Microcephaly Disease Gene Wdr62 Regulates Mitotic Progression of Embryonic Neural Stem Cells and Brain Size , 2014, Nature Communications.

[8]  G. Gambaro,et al.  mTOR inhibitors and renal allograft: Yin and Yang , 2014, Journal of Nephrology.

[9]  Stefan Glasauer,et al.  Vestibular and cerebellar contribution to gaze optimality. , 2014, Brain : a journal of neurology.

[10]  E. Aronica,et al.  Fetal brain mTOR signaling activation in tuberous sclerosis complex. , 2014, Cerebral cortex.

[11]  S. Baez,et al.  Tracking the Cognitive, Social, and Neuroanatomical Profile in Early Neurodegeneration: Type III Cockayne Syndrome , 2013, Front. Aging Neurosci..

[12]  M. Zeier,et al.  Cellular Effects of Everolimus and Sirolimus on Podocytes , 2013, PloS one.

[13]  P. Crino,et al.  Focal malformations of cortical development: New vistas for molecular pathogenesis , 2013, Neuroscience.

[14]  K. Oegema,et al.  The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules , 2013, The Journal of cell biology.

[15]  J. Martin-Serrano,et al.  Knowing when to cut and run: mechanisms that control cytokinetic abscission. , 2013, Trends in cell biology.

[16]  Christopher A Walsh,et al.  Genetic causes of microcephaly and lessons for neuronal development , 2013, Wiley interdisciplinary reviews. Developmental biology.

[17]  Shuo Lin,et al.  Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis , 2013, The Journal of Neuroscience.

[18]  M. Saijo The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair , 2013, Mechanisms of Ageing and Development.

[19]  U. Sauer,et al.  Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis , 2013, Science.

[20]  J. Asara,et al.  Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 , 2013, Science.

[21]  M. Saleem,et al.  Protective Effects of the mTOR Inhibitor Everolimus on Cytoskeletal Injury in Human Podocytes Are Mediated by RhoA Signaling , 2013, PloS one.

[22]  M. Manto,et al.  The Contributions of the Cerebellum in Sensorimotor Control: What Are the Prevailing Opinions Which Will Guide Forthcoming Studies? , 2013, Cerebellum.

[23]  D. Ellison Neuropathology : a reference text of CNS pathology , 1998 .

[24]  A. Hendrickson,et al.  Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey , 2013, Brain Structure and Function.

[25]  S. Graham,et al.  Anterograde Degeneration along the Visual Pathway after Optic Nerve Injury , 2012, PloS one.

[26]  T. Wieland,et al.  Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. , 2012, American journal of human genetics.

[27]  H. Omran,et al.  High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing , 2012, Journal of Medical Genetics.

[28]  D. Zurakowski,et al.  Effectiveness of a combination therapy using calcineurin inhibitor and mTOR inhibitor in preventing allograft rejection and post-transplantation renal cancer progression. , 2012, Cancer letters.

[29]  R. Barton Embodied cognitive evolution and the cerebellum , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  C. Stafstrom,et al.  Galloway-Mowat syndrome: neurologic features in two sibling pairs. , 2012, Pediatric neurology.

[31]  V. D’Agati Pathobiology of focal segmental glomerulosclerosis: new developments , 2012, Current opinion in nephrology and hypertension.

[32]  Chengjin Li,et al.  MTOR regulates autophagic flux in the glomerulus , 2012, Autophagy.

[33]  T. Mitchison,et al.  Midbody assembly and its regulation during cytokinesis , 2012, Molecular biology of the cell.

[34]  L. Barisoni Podocyte biology in segmental sclerosis and progressive glomerular injury. , 2012, Advances in chronic kidney disease.

[35]  Walid A Houry,et al.  The role of Hsp90 in protein complex assembly. , 2012, Biochimica et biophysica acta.

[36]  Kristian Cibulskis,et al.  Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases , 2012, PloS one.

[37]  D. Surmeier,et al.  Muscarinic modulation of striatal function and circuitry. , 2012, Handbook of Experimental Pharmacology.

[38]  V. D’Agati,et al.  Focal segmental glomerulosclerosis. , 2011, The New England journal of medicine.

[39]  Huseyin Boyaci,et al.  Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. , 2011, Genome research.

[40]  S. Pal,et al.  Calcineurin Inhibitor-Induced and Ras-Mediated Overexpression of VEGF in Renal Cancer Cells Involves mTOR through the Regulation of PRAS40 , 2011, PloS one.

[41]  R. Wanke,et al.  Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. , 2011, The Journal of clinical investigation.

[42]  Y. Robitaille,et al.  Neuropathological Homology in True Galloway-Mowat Syndrome , 2011, Journal of child neurology.

[43]  C. Woods,et al.  WDR62 is associated with the spindle pole and is mutated in human microcephaly , 2010, Nature Genetics.

[44]  C. Walsh,et al.  Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture , 2010, Nature Genetics.

[45]  Visuomotor Cerebellum in Human and Nonhuman Primates , 2010, The Cerebellum.

[46]  Stephan J Sanders,et al.  Whole exome sequencing identifies recessive WDR62 mutations in severe brain malformations , 2010, Nature.

[47]  T. Aosaki,et al.  Acetylcholine–dopamine balance hypothesis in the striatum: An update , 2010, Geriatrics & gerontology international.

[48]  S. Lindquist,et al.  HSP90 at the hub of protein homeostasis: emerging mechanistic insights , 2010, Nature Reviews Molecular Cell Biology.

[49]  K. Strauss,et al.  STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. , 2010, The Journal of clinical investigation.

[50]  P. Striano,et al.  Galloway–Mowat syndrome: An early-onset progressive encephalopathy with intractable epilepsy associated to renal impairment. Two novel cases and review of literature , 2010, Seizure.

[51]  R. King,et al.  Understanding cytokinesis failure. , 2010, Advances in experimental medicine and biology.

[52]  H. Storr,et al.  Deficiency of ferritin heavy-chain nuclear import in triple a syndrome implies nuclear oxidative damage as the primary disease mechanism. , 2009, Molecular endocrinology.

[53]  J. Volpe Cerebellum of the Premature Infant: Rapidly Developing, Vulnerable, Clinically Important , 2009, Journal of child neurology.

[54]  J. Nagy,et al.  [Focal segmental glomerulosclerosis]. , 2008, Orvosi hetilap.

[55]  D. James Surmeier,et al.  Re-emergence of striatal cholinergic interneurons in movement disorders , 2007, Trends in Neurosciences.

[56]  G. Meyer Genetic control of neuronal migrations in human cortical development. , 2006, Advances in anatomy, embryology, and cell biology.

[57]  B. Iványi,et al.  Primer: histopathology of calcineurin-inhibitor toxicity in renal allografts , 2006, Nature Clinical Practice Nephrology.

[58]  K. Ikeda,et al.  G protein-activated inwardly rectifying K+ channel inhibition and rescue of weaver mouse motor functions by antidepressants , 2006, Neuroscience Research.

[59]  J. Steiss,et al.  Late-onset nephrotic syndrome and severe cerebellar atrophy in Galloway-Mowat syndrome. , 2005, Neuropediatrics.

[60]  Winnie S. Liang,et al.  Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Knobeloch,et al.  The Triple A Syndrome Is Due to Mutations in ALADIN, a Novel Member of the Nuclear Pore Complex , 2004, Endocrine research.

[62]  Y. Fukushima,et al.  Microcephaly and early-onset nephrotic syndrome —confusion in Galloway-Mowat syndrome , 1995, Pediatric Nephrology.

[63]  S. van Nocker,et al.  The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function , 2003, BMC Genomics.

[64]  W. O. Renier,et al.  Development and developmental disorders of the human cerebellum , 2003, Journal of Neurology.

[65]  C. Duyckaerts,et al.  Greenfield's Neuropathology , 2003 .

[66]  A. Wynshaw-Boris,et al.  Multiple Dose-Dependent Effects of Lis1 on Cerebral Cortical Development , 2003, The Journal of Neuroscience.

[67]  A. Fox,et al.  Cell death in weaver mouse cerebellum. , 2002, Cerebellum.

[68]  L. Seress,et al.  Cell formation in the cortical layers of the developing human cerebellum , 2001, International Journal of Developmental Neuroscience.

[69]  J. Weber,et al.  Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. , 1999, American journal of human genetics.

[70]  P. Kaplan,et al.  Nephrotic syndrome, microcephaly, and developmental delay: three separate syndromes. , 1999, American journal of medical genetics.

[71]  F. Shihab Cyclosporine nephropathy: pathophysiology and clinical impact. , 1996, Seminars in nephrology.

[72]  A. Cohen,et al.  Kidney in Galloway-Mowat syndrome: clinical spectrum with description of pathology. , 1994, Kidney international.

[73]  Richard J Smeyne,et al.  Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  A. Mowat,et al.  Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. , 1968, Journal of medical genetics.

[75]  R. Sidman,et al.  An autoradiographic analysis of histogenesis in the mouse cerebellum. , 1961, Experimental neurology.