Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.

Carlos Caldas | Fengtang Yang | Rosalind Eeles | Anne Vincent-Salomon | John W M Martens | Young Seok Ju | Patrick S Tarpey | Serena Nik-Zainal | Peter J Campbell | Christine Desmedt | Michael R Stratton | Alastair M Thompson | Ola Myklebost | Åke Borg | Elli Papaemmanuil | Yilong Li | Jórunn Erla Eyfjörd | Stian Knappskog | Sancha Martin | Manasa Ramakrishna | Ultan McDermott | Colin Cooper | Samuel Aparicio | Gunes Gundem | Moritz Gerstung | Beiyuan Fu | Anthony R Green | Christopher Foster | David E Neal | Sunil R Lakhani | Fengtang Yang | A. Børresen-Dale | M. Stratton | P. Campbell | C. Desmedt | R. Eeles | D. Neal | C. Cooper | J. Martens | P. Tarpey | S. Nik-Zainal | Sancha Martin | L. Yates | E. Papaemmanuil | M. Lee | G. Thomas | S. Lakhani | A. Tutt | C. Caldas | S. Aparicio | A. Richardson | M. Gerstung | G. Gundem | H. Davies | J. Tubío | S. Behjati | Å. Borg | J. Eyfjörd | S. Knappskog | Manasa Ramakrishna | P. Span | A. Vincent-Salomon | U. McDermott | A. Green | A. Thompson | B. Fu | Yilong Li | C. Purdie | B. Tan | A. Flanagan | J. Nangalia | C. Foster | A. Fullam | Anne-Lise Børresen-Dale | Gilles Thomas | Jyoti Nangalia | Andrew Tutt | W. Mifsud | Andrea L Richardson | Ming Ta Michael Lee | Lucy Yates | Sam Behjati | William Mifsud | Colin A Purdie | Paul N Span | Laura J van't Veer | Adrienne M Flanagan | Helen R Davies | Jose M C Tubio | Anthony Fullam | Benita K T Tan | Steven G Bova | T. Veer | L. Van | Y. Ju | L. V. van‘t Veer | J. Martens | M. M. Lee | L. V. van’t Veer | M. Martens | 43 | WilliamMifsud | Ming-ming Ta | Michael Lee | G. Thomas | L. van't Veer | B. Tan | William Mifsud | Ming Ta Michael Lee

[1]  D. Fraidenraich,et al.  Reversible mitochondrial DNA accumulation in nuclei of pluripotent stem cells. , 2014, Stem cells and development.

[2]  Bin Tean Teh,et al.  Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer , 2014, eLife.

[3]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[4]  J. Nunnari,et al.  Mitochondrial form and function , 2014, Nature.

[5]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[6]  Cécile Fairhead,et al.  Mitochondrial DNA repairs double-strand breaks in yeast chromosomes , 1999, Nature.

[7]  M. Coughlan,et al.  Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? , 2014, British journal of pharmacology.

[8]  W. Martin,et al.  Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes , 2010, PLoS genetics.

[9]  W. Martin,et al.  Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes , 2004, Nature Reviews Genetics.

[10]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[11]  Marcella Attimonelli,et al.  The reference human nuclear mitochondrial sequences compilation validated and implemented on the UCSC genome browser , 2011, BMC Genomics.

[12]  Doree Sitkoff,et al.  models homology modeling : From sequence alignments to structural A comparative study of available software for high-accuracy , 2005 .

[13]  References , 1971 .

[14]  Kai Rothkamm,et al.  Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome , 2013, PloS one.

[15]  Akinori Eiyama,et al.  Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast , 2013, FEBS letters.

[16]  Adrian Gherman,et al.  Population Bottlenecks as a Potential Major Shaping Force of Human Genome Architecture , 2007, PLoS genetics.

[17]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[18]  Neil J Ganem,et al.  DNA breaks and chromosome pulverization from errors in mitosis , 2012, Nature.

[19]  R. Palmiter,et al.  Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Shay,et al.  HeLaTG cells have mitochondrial DNA inserted into the c-myc oncogene. , 1991, Oncogene.

[21]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[22]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[23]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[24]  Chun-Yuan Huang,et al.  Direct measurement of the transfer rate of chloroplast DNA into the nucleus , 2003, Nature.

[25]  S Povey,et al.  Dynamic molecular combing: stretching the whole human genome for high-resolution studies. , 1997, Science.

[26]  S. Dimauro,et al.  The genetics and pathology of oxidative phosphorylation , 2001, Nature Reviews Genetics.

[27]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[28]  G. Semenza,et al.  Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia* , 2008, Journal of Biological Chemistry.

[29]  J. Palmer,et al.  Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. , 2003, Molecular phylogenetics and evolution.

[30]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[31]  D. Cooper,et al.  An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene , 2010, Human Genomics.

[32]  D. Hermand,et al.  Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe. , 2010, Genome research.

[33]  G. Dewald,et al.  A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. , 2002, The American journal of pathology.

[34]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[35]  Ryan E. Mills,et al.  The genomic landscape of polymorphic human nuclear mitochondrial insertions , 2014, bioRxiv.

[36]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[37]  J. Drost,et al.  Biological basis of germline mutation: Comparisons of spontaneous germline mutation rates among drosophila, mouse, and human , 1995, Environmental and molecular mutagenesis.

[38]  D. Cooper,et al.  Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer , 2003, Human Genetics.

[39]  L. Bubendorf,et al.  Role of KCNMA1 in Breast Cancer , 2012, PloS one.

[40]  Eduardo Ruiz-Pesini,et al.  Mitochondrial DNA‐like sequences in the nucleus (NUMTs): Insights into our African origins and the mechanism of foreign DNA integration , 2004, Human mutation.

[41]  P. Thorsness,et al.  Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae , 1990, Nature.

[42]  X. Yu,et al.  Patching broken chromosomes with extranuclear cellular DNA. , 1999, Molecular cell.

[43]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[44]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[45]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[46]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[47]  R. Schiffmann,et al.  Transfer of a mitochondrial DNA fragment to MCOLN1 causes an inherited case of mucolipidosis IV , 2004, Human mutation.

[48]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[49]  P. Stankiewicz,et al.  Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements , 2011, Cell.

[50]  Peter D Stenson,et al.  Meta‐Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage , 2005, Human Mutation.