Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2

The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide’s rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (∼1 μm) and local structure (≤1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for...

[1]  Gerbrand Ceder,et al.  NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods , 2007 .

[2]  M. Bestetti,et al.  Electrochemical characterization of carbon nanotubes for hydrogen storage , 2004 .

[3]  James McBreen,et al.  In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries , 2001 .

[4]  J. Dahn,et al.  Synthesis, Characterization, and Thermal Stability of LiCo1 − z [ MnMg ] z / 2O2 , 2010 .

[5]  Patrick Willmann,et al.  Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials , 1996 .

[6]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[7]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[8]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.

[9]  C. Delmas,et al.  Structure of Li2MnO3 with different degrees of defects , 2010 .

[10]  Boyce Jb,et al.  Local structure of ionic solid solutions: Extended x-ray-absorption fine-structure study. , 1985 .

[11]  M. Shikano,et al.  Coexistence of layered and cubic rocksalt structures with a common oxygen sublattice in Li1.2Mn0.4Fe0.4O2 particles: A transmission electron microscopy study , 2008 .

[12]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[13]  P. Nellist,et al.  The principles and interpretation of annular dark-field Z-contrast imaging , 2000 .

[14]  Gerbrand Ceder,et al.  Lithium diffusion mechanisms in layered intercalation compounds , 2001 .

[15]  Daniel P. Abraham,et al.  First-cycle irreversibility of layered Li–Ni–Co–Mn oxide cathode in Li-ion batteries , 2008 .

[16]  Y. Meng,et al.  Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 ≤ x ≤ 1/2) Compounds , 2005 .

[17]  C. Delmas,et al.  Structural investigations on Li0.65−zNi1+zO2 cathode material: XRD and EXAFS studies , 1998 .

[18]  J. Cabana,et al.  Cation ordering in Li[NixMnxCo(1-2x)] O2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study , 2007 .

[19]  D. Abraham,et al.  Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy , 2008 .

[20]  Anton Van der Ven,et al.  First-principles calculations of lithium ordering and phase stability on Li x NiO 2 , 2002 .

[21]  S. Kraft,et al.  High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies , 1996 .

[22]  C. Delmas,et al.  6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (0 .ltoreq. y .ltoreq. 1) , 1995 .

[23]  M. Balasubramanian,et al.  In Situ X‐Ray Absorption Studies of a High‐Rate LiNi0.85Co0.15 O 2 Cathode Material , 2000 .

[24]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[25]  P. Strobel,et al.  Crystallographic and magnetic structure of Li2MnO3 , 1988 .

[26]  D. Capsoni,et al.  Ab initio structure determination of Li2MnO3 from X-ray powder diffraction data , 1997 .

[27]  C. Delmas,et al.  Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50≤x≤0.75) solid solution , 1999 .

[28]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[29]  Stern,et al.  Buckled crystalline structure of mixed ionic salts. , 1993, Physical review letters.

[30]  Y. Shao-horn,et al.  Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides , 2009 .

[31]  M. Shikano,et al.  Formation and Disappearance of Spinel Nanograins in Li1.2 − x Mn0.4Fe0.4O2 ( 0 ≤ x ≤ 0.99 ) during Extraction and Insertion of Li Ions , 2009 .

[32]  John T. Vaughey,et al.  Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries☆ , 2006 .

[33]  Kazuhisa Tamura,et al.  Surface Structure of LiNi0.8Co0.2O2: a New Experimental Technique Using in Situ X-ray Diffraction and Two-Dimensional Epitaxial Film Electrodes , 2009 .

[34]  Xiao‐Qing Yang,et al.  In Situ X‐Ray Absorption Spectroscopy Study of Li ( 1 − z ) Ni ( 1 + z ) O 2 ( z ≤ 0.02 ) Cathode Material , 2000 .

[35]  Christopher S. Johnson,et al.  Structural Features of Low-Temperature LiCoO2and Acid-Delithiated Products , 1998 .

[36]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[37]  L. Croguennec,et al.  Local structure of LiNiO2 studied by neutron diffraction , 2005 .

[38]  D. Abraham,et al.  Structural study of Li2MnO3 by electron microscopy , 2009 .

[39]  D. Abraham,et al.  Local Structure of Layered Oxide Electrode Materials for Lithium‐Ion Batteries , 2010, Advanced materials.

[40]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[41]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[42]  M. Balasubramanian,et al.  In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material , 2002 .

[43]  D. Abraham,et al.  Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries , 2011 .

[44]  I. Nakai,et al.  X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems , 1997 .

[45]  J. Zuo,et al.  Web-Based Electron Microscopy Application Software: Web-EMAPS , 2004, Microscopy and Microanalysis.