Online Matching in a Ride-Sharing Platform

We propose a formal graph-theoretic model for studying the problem of matching rides online in a ride-sharing platform. Unlike most of the literature on online matching, our model, that we call {\em Online Windowed Non-Bipartite Matching} ($\mbox{OWNBM}$), pertains to online matching in {\em non-bipartite} graphs. We show that the edge-weighted and vertex-weighted versions of our model arise naturally in ride-sharing platforms. We provide a randomized $\frac{1}{4}$-competitive algorithm for the edge-weighted case using a beautiful result of Lehmann, Lehmann and Nisan (EC 2001) for combinatorial auctions. We also provide an $\frac{1}{2} (1 - \frac{1}{e})$-competitive algorithm for the vertex-weighted case (with some constraint relaxation) using insights from an elegant randomized primal-dual analysis technique of Devanur, Jain and Kleinberg (SODA 2013).

[1]  Aranyak Mehta,et al.  Online Stochastic Matching: Beating 1-1/e , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Jon Feldman,et al.  Online Ad Assignment with Free Disposal , 2009, WINE.

[3]  Yu Zheng,et al.  T-share: A large-scale dynamic taxi ridesharing service , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[4]  Aranyak Mehta,et al.  Online Matching and Ad Allocation , 2013, Found. Trends Theor. Comput. Sci..

[5]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[6]  Paolo Santi,et al.  Supporting Information for Quantifying the Benefits of Vehicle Pooling with Shareability Networks Data Set and Pre-processing , 2022 .

[7]  Itai Ashlagi,et al.  A dynamic model of barter exchange , 2015, SODA.

[8]  Niels A. H. Agatz,et al.  The Value of Optimization in Dynamic Ride-Sharing: A Simulation Study in Metro Atlanta , 2010 .

[9]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[10]  Emilio Frazzoli,et al.  Shared-Vehicle Mobility-on-Demand Systems: A Fleet Operator's Guide to Rebalancing Empty Vehicles , 2016 .

[11]  Bart van Arem,et al.  Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility , 2016 .

[12]  Amin Saberi,et al.  Online stochastic matching: online actions based on offline statistics , 2010, SODA '11.

[13]  Marco Pavone,et al.  Control of robotic mobility-on-demand systems: A queueing-theoretical perspective , 2014, Int. J. Robotics Res..

[14]  Patrick Jaillet,et al.  Online Stochastic Matching: New Algorithms with Better Bounds , 2014, Math. Oper. Res..

[15]  Emilio Frazzoli,et al.  On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment , 2017, Proceedings of the National Academy of Sciences.

[16]  Morteza Zadimoghaddam,et al.  Online Stochastic Weighted Matching: Improved Approximation Algorithms , 2011, WINE.

[17]  Nikhil R. Devanur,et al.  Randomized Primal-Dual analysis of RANKING for Online BiPartite Matching , 2013, SODA.

[18]  Gagan Goel,et al.  Online Vertex-Weighted Bipartite Matching and Single-bid Budgeted Allocations , 2010, SODA.

[19]  Emilio Frazzoli,et al.  Robotic load balancing for mobility-on-demand systems , 2012, Int. J. Robotics Res..