Order out of chaos: assembly of ligand binding sites in heparan sulfate.

Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.

[1]  R. Dwek,et al.  Concepts and principles of O-linked glycosylation. , 1998, Critical reviews in biochemistry and molecular biology.

[2]  A. D. de Agostini,et al.  Anticoagulant heparan sulfate proteoglycans expression in the rat ovary peaks in preovulatory granulosa cells. , 2001, Glycobiology.

[3]  C. Hirschberg,et al.  A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Beddington,et al.  The Molecular Phenotype of Heparan Sulfate in theHs2st −/− Mutant Mouse* , 2001, The Journal of Biological Chemistry.

[5]  V. Hascall,et al.  Proteoglycan core protein families. , 1986, Annual review of biochemistry.

[6]  J. Turnbull,et al.  Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. , 1994, The Journal of biological chemistry.

[7]  U. Lindahl,et al.  Biosynthesis of heparan sulfate in rat liver. Characterization of polysaccharides obtained with intact cells and with a cell-free system. , 1982, The Journal of biological chemistry.

[8]  F. Hanisch,et al.  O-Glycosylation of the Mucin Type , 2001, Biological chemistry.

[9]  C. Hirschberg,et al.  Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. , 1994, The Journal of biological chemistry.

[10]  L. Kjellén,et al.  Expression of the mouse mastocytoma glucosaminyl N-deacetylase/ N-sulfotransferase in human kidney 293 cells results in increased N-sulfation of heparan sulfate. , 1996, Biochemistry.

[11]  A. Lander,et al.  Differential binding of chemokines to glycosaminoglycan subpopulations , 1994, Current Biology.

[12]  E. Guillén,et al.  Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Biemann,et al.  Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Höök,et al.  Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. , 1980, The Journal of biological chemistry.

[15]  A. Malmström,et al.  Biosynthesis of heparin. Assay and properties of the microsomal uronosyl C-5 epimerase. , 1979, The Journal of biological chemistry.

[16]  K. Kleesiek,et al.  Molecular cloning and expression of human UDP-d-Xylose:proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. , 2000, Journal of molecular biology.

[17]  M. Lovett,et al.  The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes , 1996, Nature Genetics.

[18]  J. Turnbull,et al.  A strategy for rapid sequencing of heparan sulfate and heparin saccharides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  L. Eriksson,et al.  Structure of heparan sulphate from human brain, with special regard to Alzheimer's disease. , 1995, The Biochemical journal.

[20]  W. Halfter,et al.  Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. , 1996, Perspectives on developmental neurobiology.

[21]  Z. Shriver,et al.  Direct isolation and sequencing of specific protein-binding glycosaminoglycans , 2001, Nature Medicine.

[22]  D. Schlessinger,et al.  Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome , 1996, Nature Genetics.

[23]  R L Jackson,et al.  Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. , 1991, Physiological reviews.

[24]  E. Ruoslahti,et al.  Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. , 1990, The Journal of biological chemistry.

[25]  C. Kevil,et al.  Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. , 1995, Oncogene.

[26]  N. Schwartz,et al.  Biosynthesis of chondroitin sulfate: interaction between xylosyltransferase and galactosyltransferase. , 1974, Biochemical and biophysical research communications.

[27]  U. Lindahl,et al.  Domain Structure of Heparan Sulfates from Bovine Organs* , 1996, The Journal of Biological Chemistry.

[28]  G. Barsh,et al.  Transgenic Expression of Syndecan-1 Uncovers a Physiological Control of Feeding Behavior by Syndecan-3 , 2001, Cell.

[29]  S. Selleck,et al.  Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. , 2000, The Journal of biological chemistry.

[30]  J. Turnbull,et al.  Molecular organization of the interferon gamma-binding domain in heparan sulphate. , 1995, The Biochemical journal.

[31]  M. Salmivirta,et al.  Sequence analysis of heparan sulphate and heparin oligosaccharides. , 1999, The Biochemical journal.

[32]  R. Midura,et al.  Structural analysis of the linkage region oligosaccharides and unsaturated disaccharides from chondroitin sulfate using CarboPac PA1. , 1992, The Journal of biological chemistry.

[33]  C. Bandtlow,et al.  Proteoglycans in the developing brain: new conceptual insights for old proteins. , 2000, Physiological reviews.

[34]  D. Beeler,et al.  6-O-Sulfotransferase-1 Represents a Critical Enzyme in the Anticoagulant Heparan Sulfate Biosynthetic Pathway* , 2001, The Journal of Biological Chemistry.

[35]  M. Schnölzer,et al.  First Isolation of Human UDP-d-Xylose: Proteoglycan Core Protein β-d-Xylosyltransferase Secreted from Cultured JAR Choriocarcinoma Cells* , 2001, The Journal of Biological Chemistry.

[36]  S. Oka,et al.  Molecular cloning and expression of a second glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. , 1999, Biochemical and biophysical research communications.

[37]  M. Bernfield,et al.  Heparan sulfate and chondroitin sulfate proteoglycans inhibit E‐selectin binding to endothelial cells , 2001, Journal of cellular biochemistry.

[38]  M. Salmivirta,et al.  Age-dependent Modulation of Heparan Sulfate Structure and Function* , 1998, The Journal of Biological Chemistry.

[39]  R. Rosenberg,et al.  Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  U. Lindahl,et al.  Biosynthesis of heparin. The D-glucuronosyl- and N-acetyl-D-glucosaminyltransferase reactions and their relation to polymer modification. , 1992, The Biochemical journal.

[41]  Nobuyuki Itoh,et al.  Fibroblast growth factors , 2001, Genome Biology.

[42]  L. Fransson,et al.  Structure of the heparan sulfate-protein linkage region. Demonstration of the sequence galactosyl-galactosyl-xylose-2-phosphate. , 1985, The Journal of biological chemistry.

[43]  R. Mulligan,et al.  Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. , 1994, The Journal of biological chemistry.

[44]  M. Wagner,et al.  Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1) , 1995, Nature Genetics.

[45]  N. Schwartz,et al.  Topography of glycosylation and UDP-xylose production. , 1993, The Journal of biological chemistry.

[46]  P. Berninsone,et al.  Heparan sulfate/heparin N-deacetylase/N-sulfotransferase. The N-sulfotransferase activity domain is at the carboxyl half of the holoenzyme. , 1998, The Journal of biological chemistry.

[47]  R. Pope,et al.  Analysis of heparan sulfate oligosaccharides by nano-electrospray ionization mass spectrometry. , 2001, Glycobiology.

[48]  K. Yoshida,et al.  Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase-3A SulfatesN-Unsubstituted Glucosamine Residues* , 1999, The Journal of Biological Chemistry.

[49]  J. J. Schwartz,et al.  The Retinoic Acid and cAMP-dependent Up-regulation of 3-O-Sulfotransferase-1 Leads to a Dramatic Augmentation of Anticoagulantly Active Heparan Sulfate Biosynthesis in F9 Embryonal Carcinoma Cells* , 1998, The Journal of Biological Chemistry.

[50]  L. Kjellén,et al.  Regulated Diversity of Heparan Sulfate* , 1998, The Journal of Biological Chemistry.

[51]  J. Filmus,et al.  Glypicans in growth control and cancer. , 2001, Glycobiology.

[52]  S. Pérez,et al.  Experimental proof for the structure of a thrombin-inhibiting heparin molecule. , 2001, Chemistry.

[53]  N. Perrimon,et al.  Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events , 2001, Nature Cell Biology.

[54]  L. Kjellén,et al.  Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. , 1989, The Biochemical journal.

[55]  M. Krasnow,et al.  Genetic control of branching morphogenesis. , 1999, Science.

[56]  J. Hassell,et al.  Identification of Sites in Domain I of Perlecan That Regulate Heparan Sulfate Synthesis* , 1997, The Journal of Biological Chemistry.

[57]  H. Kitagawa,et al.  The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis , 2000, EMBO reports.

[58]  T. A. Fritz,et al.  Partial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides. , 1997, Glycobiology.

[59]  M. Porcionatto,et al.  Structure of heparan sulfate: identification of variable and constant oligosaccharide domains in eight heparan sulfates of different origins. , 1998, Cellular and molecular biology.

[60]  J. Esko,et al.  An Animal Cell Mutant Defective in Heparan Sulfate Hexuronic Acid 2-O-Sulfation* , 1996, The Journal of Biological Chemistry.

[61]  J. Stow,et al.  Localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase to the trans-Golgi network. , 1997, The Biochemical journal.

[62]  L. Kjellén,et al.  Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. , 2000, Biochemistry.

[63]  R. Vivès,et al.  Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. , 2000, Glycobiology.

[64]  H. Freeze,et al.  A Novel Method to Co-localize Glycosaminoglycan-Core Oligosaccharide Glycosyltransferases in Rat Liver Golgi , 1995, The Journal of Biological Chemistry.

[65]  J. Esko,et al.  Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. , 1994, The Journal of biological chemistry.

[66]  J. Funderburgh MINI REVIEW Keratan sulfate: structure, biosynthesis, and function , 2000 .

[67]  J. Hirsh,et al.  Heparin Binding Proteins Contribution to Heparin Rebound After Cardiopulmonary Bypass , 1993, Circulation.

[68]  H. Nakato,et al.  Drosophila Heparan Sulfate 6-O-Sulfotransferase (dHS6ST) Gene , 2001, The Journal of Biological Chemistry.

[69]  A. Varki,et al.  Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. , 1993, Science.

[70]  K. Yoshida,et al.  Human Homolog of Caenorhabditis elegans sqv-3 Gene Is Galactosyltransferase I Involved in the Biosynthesis of the Glycosaminoglycan-Protein Linkage Region of Proteoglycans* , 1999, The Journal of Biological Chemistry.

[71]  L. Kjellén,et al.  Proteoglycans: structures and interactions. , 1991, Annual review of biochemistry.

[72]  M. Höök,et al.  Biosynthesis of heparin. Studies on the microsomal sulfation process. , 1975, The Journal of biological chemistry.

[73]  M. Lyon,et al.  Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. , 1994, The Journal of biological chemistry.

[74]  T. Darden,et al.  Heparan/Chondroitin Sulfate Biosynthesis , 2000, The Journal of Biological Chemistry.

[75]  R. Iozzo The Biology of the Small Leucine-rich Proteoglycans , 1999, The Journal of Biological Chemistry.

[76]  L. Rosenfeld,et al.  Location of specific oligosaccharides in heparin in terms of their distance from the protein linkage region in the native proteoglycan. , 1988, The Journal of biological chemistry.

[77]  P. Robbins,et al.  Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. , 1998, Annual review of biochemistry.

[78]  J. Silbert,et al.  Effects of brefeldin A on the localization of chondroitin sulfate-synthesizing enzymes. Activities in subfractions of the Golgi from chick embryo epiphyseal cartilage. , 1992, The Journal of biological chemistry.

[79]  J. Marsh,et al.  Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. , 1997, Development.

[80]  D. Stainier,et al.  UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. , 2001, Science.

[81]  J. J. Schwartz,et al.  Molecular Cloning and Expression of Mouse and Human cDNAs Encoding Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase* , 1997, The Journal of Biological Chemistry.

[82]  I. Fuki,et al.  Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism , 1997, Current opinion in lipidology.

[83]  J. J. Schwartz,et al.  The Effect of Precursor Structures on the Action of Glucosaminyl 3-O-Sulfotransferase-1 and the Biosynthesis of Anticoagulant Heparan Sulfate* , 2001, The Journal of Biological Chemistry.

[84]  G. Palade,et al.  Sulfated compounds in the zymogen granules of the guinea pig pancreas , 1978, The Journal of cell biology.

[85]  P. Spear,et al.  Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. , 2001, The Journal of clinical investigation.

[86]  S. Stringer,et al.  Specific Binding of the Chemokine Platelet Factor 4 to Heparan Sulfate* , 1997, The Journal of Biological Chemistry.

[87]  C. McCormick,et al.  The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Massagué,et al.  A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D. Feingold,et al.  Biosynthesis of heparin. Loss of C-5 hydrogen during conversion of D-glucuronic to L-iduronic acid residues. , 1976, Biochemical and biophysical research communications.

[90]  P. de Waard,et al.  Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. I. Six compounds containing 0 or 1 sulfate and/or phosphate residues. , 1992, The Journal of biological chemistry.

[91]  E. Quentin,et al.  A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Gordon,et al.  IL-12 is a heparin-binding cytokine. , 1999, Journal of immunology.

[93]  C. McCormick,et al.  The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. , 2001, The Journal of clinical investigation.

[94]  H. Kitagawa,et al.  Molecular Cloning and Expression of Glucuronyltransferase I Involved in the Biosynthesis of the Glycosaminoglycan-Protein Linkage Region of Proteoglycans* , 1998, The Journal of Biological Chemistry.

[95]  Y. Okumura,et al.  The phosphorylated and/or sulfated structure of the carbohydrate-protein-linkage region isolated from chondroitin sulfate in the hybrid proteoglycans of Engelbreth-Holm-Swarm mouse tumor. , 1992, European journal of biochemistry.

[96]  S. Jhanwar,et al.  Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma , 2000, Oncogene.

[97]  M. Salmivirta,et al.  Binding of Heparin/Heparan Sulfate to Fibroblast Growth Factor Receptor 4* , 2001, The Journal of Biological Chemistry.

[98]  H. Piwnica-Worms,et al.  The G2 DNA Damage Checkpoint Delays Expression of Genes Encoding Mitotic Regulators* , 2001, The Journal of Biological Chemistry.

[99]  D. Feingold,et al.  Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. , 1984, The Journal of biological chemistry.

[100]  H. Ertesvåg,et al.  Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. , 2001, Biochimie.

[101]  L. Gotow,et al.  Oligosaccharide Sequence of Human Breast Cancer Cell Heparan Sulfate with High Affinity for Laminin* , 1998, The Journal of Biological Chemistry.

[102]  R. Pettersson,et al.  Characterization of fibroblast growth factor 1 binding heparan sulfate domain. , 1999, Glycobiology.

[103]  L. Pedersen,et al.  Crystal Structure of the Sulfotransferase Domain of Human Heparan Sulfate N-Deacetylase/ N-Sulfotransferase 1* , 1999, The Journal of Biological Chemistry.

[104]  H. Yoshida,et al.  Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species. , 1997, The Biochemical journal.

[105]  S. Hemmerich,et al.  MINI REVIEW Carbohydrate sulfotransferases in lymphocyte homing , 2000 .

[106]  H. Horvitz,et al.  Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Z. Shriver,et al.  Sequencing complex polysaccharides. , 1999, Science.

[108]  D. Martindale,et al.  The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate , 1998, Nature Genetics.

[109]  R. U. Margolis,et al.  Disaccharide Composition of Heparan Sulfates: Brain, Nervous Tissue Storage Organelles, Kidney, and Lung , 1994, Journal of neurochemistry.

[110]  J. Spring,et al.  Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. , 1992, Annual review of cell biology.

[111]  H. Kitagawa,et al.  Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[112]  D. Spillmann,et al.  Characterization of Heparin and Heparan Sulfate Domains Binding to the Long Splice Variant of Platelet-derived Growth Factor A Chain* , 1997, The Journal of Biological Chemistry.

[113]  C. McKerlie,et al.  Glypican-3–Deficient Mice Exhibit Developmental Overgrowth and Some of the Abnormalities Typical of Simpson-Golabi-Behmel Syndrome , 1999, The Journal of cell biology.

[114]  U. Lindahl,et al.  Biosynthesis of heparin. Enzymatic sulfation of pentasaccharides. , 1991, The Journal of biological chemistry.

[115]  B. Olwin,et al.  Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. , 1993, The Journal of biological chemistry.

[116]  E. Buddecke,et al.  Two N-acetylgalactosaminyltransferase are involved in the biosynthesis of chondroitin sulfate. , 1985, European journal of biochemistry.

[117]  J. Silbert,et al.  Biosynthesis of chondroitin sulfate. Organization of sulfation. , 1989, The Journal of biological chemistry.

[118]  J. Esko,et al.  Chinese Hamster Ovary Cell Mutants Defective in Glycosaminoglycan Assembly and Glucuronosyltransferase I* , 1999, The Journal of Biological Chemistry.

[119]  P. Seeberger,et al.  Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases. , 2001, The Biochemical journal.

[120]  M. Petitou,et al.  Biosynthesis of heparin. O-sulfation of the antithrombin-binding region. , 1988, The Journal of biological chemistry.

[121]  M. Hollingsworth,et al.  A family of human beta3-galactosyltransferases. Characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta-nacetyl-galactosamine beta-1,3-galactosyltransferase family. , 1998, The Journal of biological chemistry.

[122]  N. Schwartz,et al.  Xylosylation is an endoplasmic reticulum to Golgi event. , 1993, The Journal of biological chemistry.

[123]  M. Höök,et al.  Glycosaminoglycans and their binding to biological macromolecules. , 1978, Annual review of biochemistry.

[124]  L. Rodén,et al.  Biosynthesis of heparin. Transfer of N-acetylglucosamine to heparan sulfate oligosaccharides. , 1981, The Journal of biological chemistry.

[125]  J. Esko,et al.  Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. , 1986, The Journal of biological chemistry.

[126]  M. Salmivirta,et al.  Selectively Desulfated Heparin Inhibits Fibroblast Growth Factor-induced Mitogenicity and Angiogenesis* , 2000, The Journal of Biological Chemistry.

[127]  D. Feingold,et al.  Biosynthesis of heparin. Hydrogen exchange at carbon 5 of the glucuronosyl residues. , 1980, Biochemistry.

[128]  A. Friedl,et al.  Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[129]  J. Schlessinger,et al.  Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. , 2000, Molecular cell.

[130]  I. Goldberg,et al.  Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. , 1994, The Journal of biological chemistry.

[131]  J. Esko,et al.  Cloning, Golgi Localization, and Enzyme Activity of the Full-length Heparin/Heparan Sulfate-Glucuronic Acid C5-epimerase* , 2001, The Journal of Biological Chemistry.

[132]  K. Kimata,et al.  Substrate specificity of the heparan sulfate hexuronic acid 2-O-sulfotransferase. , 2001, Biochemistry.

[133]  M. Salmivirta,et al.  Structural diversity of N-sulfated heparan sulfate domains: distinct modes of glucuronyl C5 epimerization, iduronic acid 2-O-sulfation, and glucosamine 6-O-sulfation. , 2000, Biochemistry.

[134]  J. Herbert,et al.  Synthesis of thrombin-inhibiting heparin mimetics without side effects , 1999, Nature.

[135]  M. Filla,et al.  Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition , 2001, The Journal of cell biology.

[136]  J. Esko,et al.  Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. , 1987, The Journal of biological chemistry.

[137]  R. Iozzo Matrix proteoglycans: from molecular design to cellular function. , 1998, Annual review of biochemistry.

[138]  R. Weksberg,et al.  Developmental Biology: Frontiers for Clinical Genetics: Overgrowth syndromes and genomie imprinting: from mouse to man , 1998 .

[139]  S. Selleck,et al.  The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. , 1995, Development.

[140]  A. Sharpe,et al.  Heparin is essential for the storage of specific granule proteases in mast cells , 1999, Nature.

[141]  Zheng Wei,et al.  Functional Analysis of Conserved Cysteines in Heparan SulfateN-Deacetylase-N-sulfotransferases* , 1999, The Journal of Biological Chemistry.

[142]  David F. Burke,et al.  Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin , 2000, Nature.

[143]  J. Esko,et al.  Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. , 1989, The Journal of biological chemistry.

[144]  L. Pedersen,et al.  A role of Lys614 in the sulfotransferase activity of human heparan sulfate N‐deacetylase/N‐sulfotransferase , 1998, FEBS letters.

[145]  G. Hu,et al.  Targeted disruption of NDST‐1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice , 2000, FEBS letters.

[146]  D. Spillmann,et al.  Glycosaminoglycan-protein interactions: a question of specificity , 1994 .

[147]  H. Kitagawa,et al.  Demonstration of the Immature Glycosaminoglycan Tetrasaccharide Sequence GlcAβ1–3Galβ1–3Galβ1–4Xyl on Recombinant Soluble Human α-Thrombomodulin , 1998, The Journal of Biological Chemistry.

[148]  J. Esko,et al.  Formation of HNK-1 Determinants and the Glycosaminoglycan Tetrasaccharide Linkage Region by UDP-GlcUA:Galactose β1,3-Glucuronosyltransferases* , 1999, The Journal of Biological Chemistry.

[149]  M. Matzuk,et al.  Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. , 2000, Developmental biology.

[150]  L. Kjellén,et al.  Cell-Surface Glycosaminoglycans , 1984 .

[151]  U. Lindahl,et al.  Mode of interaction between platelet factor 4 and heparin. , 1993, Glycobiology.

[152]  S. Hubbard,et al.  Structural Basis for FGF Receptor Dimerization and Activation , 1999, Cell.

[153]  J. Karlinsky,et al.  cDNA cloning, genomic organization and chromosomal localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase-2. , 1998, The Biochemical journal.

[154]  Jian Liu,et al.  Purification of Heparan Sulfate D-Glucosaminyl 3-O-Sulfotransferase* , 1996, The Journal of Biological Chemistry.

[155]  Eric S. Lander,et al.  The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping , 1994, Cell.

[156]  R. Rosenberg,et al.  Anticoagulant Heparan Sulfate Precursor Structures in F9 Embryonal Carcinoma Cells* , 1999, The Journal of Biological Chemistry.

[157]  Christine M. Williams Editorial Comment: Nutrition , 1997 .

[158]  Joseph Schlessinger,et al.  Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity , 2000, Cell.

[159]  T. Doering,et al.  Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: The pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[160]  A. Woods,et al.  Syndecans: synergistic activators of cell adhesion. , 1998, Trends in cell biology.

[161]  M. Lyon,et al.  Liver heparan sulfate structure. A novel molecular design. , 1994, The Journal of biological chemistry.

[162]  G. Giménez-Gallego,et al.  Sequence Analysis of Heparan Sulfate Epitopes with Graded Affinities for Fibroblast Growth Factors 1 and 2* , 2001, The Journal of Biological Chemistry.

[163]  U. Lindahl,et al.  Biosynthesis of heparin/heparan sulfate. Purification of the D-glucuronyl C-5 epimerase from bovine liver. , 1994, The Journal of biological chemistry.

[164]  M. Warman,et al.  A member of a family of sulfate-activating enzymes causes murine brachymorphism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[165]  E. Kempner,et al.  A monomeric protein in the Golgi membrane catalyzes both N-deacetylation and N-sulfation of heparan sulfate. , 1994, The Journal of biological chemistry.

[166]  S. Selleck,et al.  The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila , 1999, Nature.

[167]  J. Silbert Biosynthesis of heparin. IV. N-Deacetylation of a precursor glycosaminoglycan. , 1967, The Journal of biological chemistry.

[168]  D. Schlessinger,et al.  Frequent silencing of the GPC3 gene in ovarian cancer cell lines. , 1999, Cancer research.

[169]  J. Esko,et al.  Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. , 2001, American journal of human genetics.

[170]  L. Kjellén,et al.  Identification and Expression in Mouse of Two Heparan Sulfate Glucosaminyl N-Deacetylase/N-Sulfotransferase Genes* , 1998, The Journal of Biological Chemistry.

[171]  K. Holme,et al.  Identification of structural features of heparin required for inhibition of herpes simplex virus type 1 binding. , 1995, Virology.

[172]  Expression of heparan sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation. , 2000, The Biochemical journal.

[173]  A. Lander,et al.  Mechanisms Underlying Preferential Assembly of Heparan Sulfate on Glypican-1* , 2001, The Journal of Biological Chemistry.

[174]  A. Varki,et al.  Endothelial Heparan Sulfate Proteoglycans That Bind to L-Selectin Have Glucosamine Residues with Unsubstituted Amino Groups (*) , 1995, The Journal of Biological Chemistry.

[175]  H. Nader,et al.  Structural differences of heparan sulfates according to the tissue and species of origin. , 1983, Biochemical and biophysical research communications.

[176]  J. Turnbull,et al.  Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. , 1992, The Journal of biological chemistry.

[177]  S. Selleck,et al.  Structural Analysis of Glycosaminoglycans inDrosophila and Caenorhabditis elegans and Demonstration That tout-velu, a Drosophila Gene Related to EXT Tumor Suppressors, Affects Heparan Sulfate in Vivo * , 2000, The Journal of Biological Chemistry.

[178]  W. A. Johnson,et al.  Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. , 1997, Development.

[179]  H. Horvitz,et al.  SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[180]  K. Yoshida,et al.  The Occurrence of Three Isoforms of Heparan Sulfate 6-O-Sulfotransferase Having Different Specificities for Hexuronic Acid Adjacent to the TargetedN-Sulfoglucosamine* , 2000, The Journal of Biological Chemistry.

[181]  D. Prockop,et al.  Location of xylosyltransferase in the cisternae of the rough endoplasmic reticulum of embryonic cartilage cells. , 1984, Connective tissue research.

[182]  W. Hendrickson,et al.  Structural interactions of fibroblast growth factor receptor with its ligands. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[183]  M. Bernfield,et al.  Structural Characterization of Heparan Sulfate and Chondroitin Sulfate of Syndecan-1 Purified from Normal Murine Mammary Gland Epithelial Cells , 2001, The Journal of Biological Chemistry.

[184]  S. Selleck,et al.  sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[185]  J. Esko,et al.  Influence of core protein sequence on glycosaminoglycan assembly. , 1996, Current opinion in structural biology.

[186]  L. Toma,et al.  The Putative Heparin-specific N-AcetylglucosaminylN-Deacetylase/N-Sulfotransferase Also Occurs in Non-heparin-producing Cells* , 1998, The Journal of Biological Chemistry.

[187]  E. Bennett,et al.  Cloning and Expression of a Proteoglycan UDP-Galactose:β-Xylose β1,4-Galactosyltransferase I , 1999, The Journal of Biological Chemistry.

[188]  N. Perrimon,et al.  Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. , 1999, Development.

[189]  R. Beddington,et al.  Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. , 1998, Genes & development.

[190]  A. Edge,et al.  Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. , 1990, The Journal of biological chemistry.

[191]  J. Esko,et al.  Molecular Cloning and Expression of a Third Member of the Heparan Sulfate/Heparin GlcNAcN-Deacetylase/ N-Sulfotransferase Family* , 1999, The Journal of Biological Chemistry.

[192]  A. M. Lawson,et al.  10E4 Antigen of Scrapie Lesions Contains an Unusual Nonsulfated Heparan Motif* , 2001, The Journal of Biological Chemistry.

[193]  R. Rosenberg,et al.  Characterization of a cell mutant specifically defective in the synthesis of anticoagulantly active heparan sulfate. , 1994, The Journal of biological chemistry.

[194]  S. Selleck,et al.  Regulation of dally, an integral membrane proteoglycan, and its function during adult sensory organ formation of Drosophila. , 2001, Developmental biology.

[195]  A. V. van Kessel,et al.  A Family of Human β4-Galactosyltransferases , 1997, The Journal of Biological Chemistry.

[196]  J. Esko,et al.  Location of the glucuronosyltransferase domain in the heparan sulfate copolymerase EXT1 by analysis of Chinese hamster ovary cell mutants. , 2000, The Journal of biological chemistry.

[197]  J. Esko,et al.  Enzyme interactions in heparan sulfate biosynthesis: Uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[198]  N. Rosenblum,et al.  Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. , 2001, Developmental biology.

[199]  L. Pedersen,et al.  Structure and function of sulfotransferases. , 2001, Archives of biochemistry and biophysics.

[200]  R. Timpl,et al.  Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin , 1999, The EMBO journal.

[201]  M. Höök,et al.  Biosynthesis of heparin. Concerted action of early polymer-modification reactions. , 1982, The Journal of biological chemistry.

[202]  K. Kimata,et al.  Characterization of Heparan Sulfate Oligosaccharides That Bind to Hepatocyte Growth Factor (*) , 1995, The Journal of Biological Chemistry.

[203]  M. Lyon,et al.  Highly Sensitive Sequencing of the Sulfated Domains of Heparan Sulfate* , 1999, The Journal of Biological Chemistry.

[204]  O Habuchi,et al.  Diversity and functions of glycosaminoglycan sulfotransferases. , 2000, Biochimica et biophysica acta.

[205]  T. Hennet,et al.  Biosynthesis of the Linkage Region of Glycosaminoglycans , 2001, The Journal of Biological Chemistry.

[206]  N. Perrimon,et al.  Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion , 1998, Nature.

[207]  A. Imberty,et al.  Structure/function studies of glycosyltransferases. , 1999, Current opinion in structural biology.

[208]  S. Selleck,et al.  Glypicans: proteoglycans with a surprise. , 2001, The Journal of clinical investigation.

[209]  N. Perrimon,et al.  Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. , 1999, Molecular cell.

[210]  R. Eisenberg,et al.  A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry , 1999, Cell.

[211]  N. Razi,et al.  Biosynthesis of heparin/heparan sulfate. The D-glucosaminyl 3-O- sulfotransferase reaction: target and inhibitor saccharides , 1995, The Journal of Biological Chemistry.

[212]  I. Pettersson,et al.  Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. , 1991, The Journal of biological chemistry.

[213]  J. Westley,et al.  Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the Escherichia coli K5 capsular polysaccharide as substrates. , 2000, Glycobiology.

[214]  A. Oldberg,et al.  Biosynthesis of decorin and glypican. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[215]  J. Esko,et al.  Molecular diversity of heparan sulfate. , 2001, The Journal of clinical investigation.

[216]  H. Ogawa,et al.  Glycosaminoglycan Binding Properties of Annexin IV, V, and VI* , 1998, The Journal of Biological Chemistry.

[217]  U. Lindahl,et al.  Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. , 2000, The Biochemical journal.

[218]  K. Kuettner,et al.  Post-translational events in proteoglycan synthesis: kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein. , 1986, Archives of biochemistry and biophysics.

[219]  J. J. Schwartz,et al.  Expression of Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase Isoforms Reveals Novel Substrate Specificities* , 1999, The Journal of Biological Chemistry.

[220]  H. Kitagawa,et al.  The Tumor Suppressor EXT-like Gene EXTL2 Encodes an α1, 4-N-Acetylhexosaminyltransferase That TransfersN-Acetylgalactosamine and N-Acetylglucosamine to the Common Glycosaminoglycan-Protein Linkage Region , 1999, The Journal of Biological Chemistry.

[221]  J. Esko,et al.  Repetitive Ser-Gly Sequences Enhance Heparan Sulfate Assembly in Proteoglycans (*) , 1995, The Journal of Biological Chemistry.

[222]  L. Hellman,et al.  Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme , 1999, Nature.

[223]  J. van den Born,et al.  Presence of N-Unsubstituted Glucosamine Units in Native Heparan Sulfate Revealed by a Monoclonal Antibody (*) , 1995, The Journal of Biological Chemistry.

[224]  J. Esko,et al.  Sulphated and undersulphated heparan sulphate proteoglycans in a Chinese hamster ovary cell mutant defective in N-sulphotransferase. , 1994, The Biochemical journal.

[225]  M. Forster,et al.  Conformation and dynamics of heparin and heparan sulfate. , 2000, Glycobiology.

[226]  A. Oldberg,et al.  Initiation of galactosaminoglycan biosynthesis , 1999 .

[227]  D. Spillmann,et al.  Structural Requirement of Heparan Sulfate for Interaction with Herpes Simplex Virus Type 1 Virions and Isolated Glycoprotein C* , 1997, The Journal of Biological Chemistry.

[228]  U. Lindahl,et al.  Glycosaminoglycans and the regulation of blood coagulation. , 1993, The Biochemical journal.

[229]  W. Skarnes,et al.  glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. , 2000, Developmental biology.

[230]  A. Oldberg,et al.  Biosynthesis of the proteoglycan decorin--transient 2-phosphorylation of xylose during formation of the trisaccharide linkage region. , 1997, European journal of biochemistry.

[231]  N. Copeland,et al.  Multiple Isoforms of Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase , 1999, The Journal of Biological Chemistry.

[232]  T. V. van Kuppevelt,et al.  Defective Heparan Sulfate Biosynthesis and Neonatal Lethality in Mice LackingN-Deacetylase/N-Sulfotransferase-1* , 2000, The Journal of Biological Chemistry.

[233]  A. Amores,et al.  The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. , 2001, Developmental cell.

[234]  H. Kitagawa,et al.  Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. , 2000, Current opinion in structural biology.

[235]  M. Jalkanen,et al.  Characterization of the d-Glucuronyl C5-epimerase Involved in the Biosynthesis of Heparin and Heparan Sulfate* , 2001, The Journal of Biological Chemistry.

[236]  J. J. Schwartz,et al.  Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? , 1997, The Journal of clinical investigation.

[237]  M. Götte,et al.  Functions of cell surface heparan sulfate proteoglycans. , 1999, Annual review of biochemistry.

[238]  D. Spillmann,et al.  Defining the Interleukin-8-binding Domain of Heparan Sulfate* , 1998, The Journal of Biological Chemistry.

[239]  N. Perrimon,et al.  Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling , 1999, Nature.

[240]  L. Kjellén,et al.  cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. , 1994, The Journal of biological chemistry.

[241]  M. Salmivirta,et al.  Heparan sulfate : a piece of information , 2004 .

[242]  N. Perrimon,et al.  The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. , 1997, Development.

[243]  M. Humphries,et al.  Elucidation of the Structural Features of Heparan Sulfate Important for Interaction with the Hep-2 Domain of Fibronectin* , 2000, The Journal of Biological Chemistry.

[244]  R. Iozzo,et al.  The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. , 1994, The Biochemical journal.

[245]  Y. Kozutsumi,et al.  Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[246]  S. Selleck,et al.  dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp. , 1997, Development.

[247]  S. Goto,et al.  UDP–sugar transporter implicated in glycosylation and processing of Notch , 2001, Nature Cell Biology.

[248]  R. Iozzo Presence of unsulfated heparan chains on the heparan sulfate proteoglycan of human colon carcinoma cells. Implications for heparan sulfate proteoglycan biosynthesis. , 1989, The Journal of biological chemistry.

[249]  T. A. Fritz,et al.  Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. , 1994, The Journal of biological chemistry.

[250]  J. Esko,et al.  Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. , 2001, The Journal of biological chemistry.