Reactive Sliding-Mode Algorithm for Collision Avoidance in Robotic Systems

This brief presents a reactive reference conditioning algorithm for robot collision avoidance based on geometric invariance and sliding-mode (SM) ideas. First, constraints are defined in terms of the measurements given by the robot's sensors in order to guarantee that collisions will not occur. Then, a supervisory loop ensures the fulfillment of the constraints modifying the reference trajectory as much as necessary by means of a discontinuous control law. The proposed algorithm activates only when the constraints are about to be violated and, thus, in contrast to conventional SM approaches, there exists no reaching mode to the limit surface of the constraints (sliding surface). The validity and effectiveness of the proposed approach is substantiated by simulation and experimental results using a mobile robot equipped with infrared sensors.

[1]  Frank L. Lewis,et al.  Control engineering series , 1998 .

[2]  Luis Gracia,et al.  Trajectory tracking with a 6R serial industrial robot with ordinary and non-ordinary singularities , 2009 .

[3]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[4]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[5]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Antonella Ferrara,et al.  Second-order sliding-mode control of a mobile robot based on a harmonic potential field , 2008 .

[8]  R. Ordonez,et al.  Swarm Tracking Using Artificial Potentials and Sliding Mode Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  Sarah K. Spurgeon,et al.  Sliding Mode Control , 1998 .

[10]  Antonio Sala,et al.  A path conditioning method with trap avoidance , 2012, Robotics Auton. Syst..

[11]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[12]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Fethi Belkhouche,et al.  Reactive Path Planning for 3-D Autonomous Vehicles , 2012, IEEE Transactions on Control Systems Technology.

[14]  Hernán De Battista,et al.  Advanced Control for Constrained Processes and Systems , 2011 .

[15]  Bruce H. Edwards,et al.  Elementary linear algebra , 1988 .

[16]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[17]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[18]  Arun D. Mahindrakar,et al.  Control of a Class of Underactuated Mechanical Systems Using Sliding Modes , 2009, IEEE Transactions on Robotics.

[19]  Luis Gracia,et al.  A supervisory loop approach to fulfill workspace constraints in redundant robots , 2012, Robotics Auton. Syst..

[20]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[21]  W. Marsden I and J , 2012 .

[22]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems , 2008 .

[23]  Luis Gracia,et al.  KINEMATIC CONTROL OF WHEELED MOBILE ROBOTS , 2008 .

[24]  Luis Gracia,et al.  Integrated sliding-mode algorithms in robot tracking applications , 2013 .

[25]  Jin Bae Park,et al.  Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty , 2009, IEEE Transactions on Control Systems Technology.

[26]  Fabricio Garelli,et al.  Limiting interactions in decentralized control of MIMO systems , 2006 .

[27]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[28]  Pedro Albertos,et al.  Sliding mode speed auto-regulation technique for robotic tracking , 2011, Robotics Auton. Syst..