A New Class of Stream Ciphers Combining LFSR and FCSR Architectures

We propose a new pseudorandom generator based on Linear Feedback Shift Registers (LFSR) and Feedback with Carry Shift Registers (FCSR).We then present a variant of this generator which can used for a self-synchronizing stream cipher.

[1]  Donald W. Davies,et al.  Advances in Cryptology — EUROCRYPT ’91 , 2001, Lecture Notes in Computer Science.

[2]  Mark Goresky,et al.  Fibonacci and Galois representations of feedback-with-carry shift registers , 2002, IEEE Trans. Inf. Theory.

[3]  Rainer A. Rueppel,et al.  Correlation Immunity and the Summation Generator , 1985, CRYPTO.

[4]  Hugo Krawczyk,et al.  The Shrinking Generator , 1994, CRYPTO.

[5]  Ueli M. Maurer,et al.  New Approaches to the Design of Self-Synchronizing Stream Ciphers , 1991, EUROCRYPT.

[6]  Mark Goresky,et al.  Cryptanalysis Based on 2-Adic Rational Approximation , 1995, CRYPTO.

[7]  Ueli Maurer,et al.  Advances in Cryptology — EUROCRYPT ’96 , 2001, Lecture Notes in Computer Science.

[8]  N. Zierler Linear Recurring Sequences , 1959 .

[9]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[10]  Jacques Patarin,et al.  Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.

[11]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[12]  Mark Goresky,et al.  Fibonacci and Galois mode feedback with carry shift registers , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[13]  Willi Meier,et al.  Correlation properties of combiners with memory in stream ciphers , 1991, Journal of Cryptology.

[14]  Rainer A. Rueppel,et al.  Linear Complexity and Random Sequences , 1985, EUROCRYPT.

[15]  Masahiro Mambo,et al.  Spending Offline Divisible Coins with Combining Capability , 2002, INDOCRYPT.