Standardized evaluation methodology for 3D/2D registration based on the Visible Human data set.

PURPOSE A new image database with a reference-based standardized evaluation methodology for objective evaluation and comparison of three-dimensional/two-dimensional (3D/2D) registration methods has been introduced. METHODS Computed tomography (CT) images of a male and female from the Visible Human Project were used and 16 subvolumes, each containing one of vertebrae T3-T12 and L1-L5 and the pelvis, were defined from the CTs. Six pairs of 2D fluoroscopic x-ray images from different views, showing the thoracic, lumbar, and pelvic regions, were rendered from the CT data using a ray-casting algorithm with an energy conversion function. Furthermore, a single 13-gauge needle was analytically simulated and projected onto the 2D images. By the novel standardized evaluation methodology, a 3D/2D registration method is evaluated by four evaluation criteria: Accuracy, reliability, robustness, and algorithm complexity. RESULTS To demonstrate the usefulness of the proposed data set and the standardized evaluation methodology, a part of the data set was used in an evaluation study of two gradient-based 3D/2D registration methods. It was shown that the use of a failure criterion to calculate the registration accuracy and reliability is not required, since all the information about a registration method can be determined from the estimated distribution of registration errors. CONCLUSIONS The proposed simulated image data set with quite realistic synthetic 2D images, depicting soft tissues and outliers, is especially suitable for preliminary testing of 3D/2D registration algorithms. Since the aim of this article is to provide objective comparison and unbiased evaluation of 3D/2D registration methods, the standardized evaluation methodology is available upon request from the authors.