The in vivo and in vitro Reconstitution of Pigment-protein Complexes, and its Implication in Acquiring a New System

[1]  I. Yamazaki,et al.  Identification of the primary electron donor in PS II of the Chl d‐dominated cyanobacterium Acaryochloris marina , 2004, FEBS letters.

[2]  T. Morosinotto,et al.  The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I* , 2003, Journal of Biological Chemistry.

[3]  R. Bassi,et al.  Xanthophyll Binding Sites of the CP29 (Lhcb4) Subunit of Higher Plant Photosystem II Investigated by Domain Swapping and Mutation Analysis* , 2003, Journal of Biological Chemistry.

[4]  J. Barber,et al.  Exploring the ability of chlorophyll b to bind to the CP43′ protein induced under iron deprivation in a mutant of Synechocystis PCC 6803 containing the cao gene , 2003, FEBS letters.

[5]  T. Morosinotto,et al.  Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. , 2003, Biochemistry.

[6]  M. Wiener,et al.  Pigment Binding of Photosystem I Light-harvesting Proteins* , 2002, The Journal of Biological Chemistry.

[7]  T. Morosinotto,et al.  The Lhca antenna complexes of higher plants photosystem I. , 2002, Biochimica et biophysica acta.

[8]  S. Satoh,et al.  Chlorophyll b inhibits the formation of photosystem I trimer in Synechocystis sp. PCC6803 , 2002, FEBS letters.

[9]  A. Young,et al.  The Binding of Xanthophylls to the Bulk Light-harvesting Complex of Photosystem II of Higher Plants , 2002, The Journal of Biological Chemistry.

[10]  L. Tian,et al.  Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. , 2002, Biochimica et biophysica acta.

[11]  W. Vermaas,et al.  Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Grimm,et al.  Loss of α-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress , 2001, Planta.

[13]  P. Booth,et al.  Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. , 2001, Journal of molecular biology.

[14]  A. Scherz,et al.  Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. , 2001, Biochemistry.

[15]  B. Green Was “molecular opportunism” a factor in the evolution of different photosynthetic light-harvesting pigment systems? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Gantt,et al.  Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Ikeuchi,et al.  Chlorophyll b Expressed in Cyanobacteria Functions as a Light-harvesting Antenna in Photosystem I through Flexibility of the Proteins* , 2001, The Journal of Biological Chemistry.

[18]  M. Mimuro,et al.  Magnetic circular dichroism properties of reaction center complexes isolated from the zinc-bacteriochlorophyll a-containing purple bacterium Acidiphilium rubrum. , 2000, Biochemistry.

[19]  J. Sturgis,et al.  Exchanging cofactors in the core antennae from purple bacteria: structure and properties of Zn-bacteriopheophytin-containing LH1. , 2000, Biochemistry.

[20]  W. Kühlbrandt,et al.  Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. , 1999, Biochemistry.

[21]  H. Ohta,et al.  Magnesium Insertion by Magnesium Chelatase in the Biosynthesis of Zinc Bacteriochlorophyll a in an Aerobic Acidophilic Bacterium Acidiphilium rubrum* , 1999, The Journal of Biological Chemistry.

[22]  H. Paulsen,et al.  Random mutations directed to transmembrane and loop domains of the light-harvesting chlorophyll a/b protein: impact on pigment binding. , 1999, Biochemistry.

[23]  D. Cugini,et al.  Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Okada,et al.  Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts , 1999, Nature.

[25]  Yamazaki,et al.  Fluorescence properties of chlorophyll d-dominating prokaryotic alga, acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells , 1999, Biochimica et biophysica acta.

[26]  D. Vaulot,et al.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance , 1999, Microbiology and Molecular Biology Reviews.

[27]  L. H. Grimme,et al.  Protease-stable integration of Lhcb1 into thylakoid membranes is dependent on chlorophyll b in allelic chlorina-f 2 mutants of barley (Hordeum vulgare L.) , 1999, Planta.

[28]  Q. Hu,et al.  A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Kazuichi Yoshida,et al.  Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Bassi,et al.  In Vitro Reconstitution of the Recombinant Photosystem II Light-harvesting Complex CP24 and Its Spectroscopic Characterization* , 1998, The Journal of Biological Chemistry.

[31]  H. Paulsen,et al.  Pigment-binding properties of the recombinant photosystem II subunit CP26 reconstituted in vitro. , 1998, European journal of biochemistry.

[32]  S. Chisholm,et al.  Rapid Diversification of Marine Picophytoplankton with Dissimilar Light-Harvesting Structures Inferred from Sequences of Prochlorococcus and Synechococcus (Cyanobacteria) , 1998, Journal of Molecular Evolution.

[33]  F. Garlaschi,et al.  Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. , 1997, Biochemistry.

[34]  G. Schmidt,et al.  In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Aebersold,et al.  Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Takaichi,et al.  Discovery of Natural Photosynthesis using Zn-Containing Bacteriochlorophyll in an Aerobic Bacterium Acidiphilium rubrum , 1996 .

[37]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[38]  M. Havaux,et al.  Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. , 1996, Journal of photochemistry and photobiology. B, Biology.

[39]  Hideaki Miyashita,et al.  Chlorophyll d as a major pigment , 1996, Nature.

[40]  H. Paulsen CHLOROPHYLL a/b‐BINDING PROTEINS , 1995 .

[41]  B. Andersson,et al.  Rapid isolation of photosystem I chlorophyll-binding proteins by anion exchange perfusion chromatography , 1995, Photosynthesis Research.

[42]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[43]  B. Green,et al.  Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation , 1994, Nature.

[44]  H. Paulsen,et al.  Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. , 1993, European journal of biochemistry.

[45]  I. Svendsen,et al.  Identification of the photosystem I antenna polypeptides in barley. Isolation of three pigment-binding antenna complexes. , 1992, European journal of biochemistry.

[46]  D. Repeta,et al.  The pigments of Prochlorococcus marinus: The presence of divinylchlorophyll a and b in a marine procaryote , 1992 .

[47]  Sallie W. Chisholm,et al.  A novel free-living prochlorophyte abundant in the oceanic euphotic zone , 1988, Nature.

[48]  R. Bassi,et al.  Chlorophyll-protein complexes of barley photosystem I. , 1987, European journal of biochemistry.

[49]  E. Lam,et al.  Chlorophyll a/b proteins of Photosystem I , 1984 .

[50]  R. Brereton,et al.  4‐Vinyl‐4‐desethyl chlorophyll a: a new naturally occurring chlorophyll , 1982 .

[51]  M. Mimuro,et al.  Carotenoids of Light Harvesting Systems: Energy Transfer Processes from Fucoxanthin and Peridinin to Chlorophyll , 2003 .

[52]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[53]  H. Paulsen Carotenoids and the Assembly of Light-harvesting Complexes , 1999 .

[54]  I. Yamazaki,et al.  Fluorescence Properties of Chlorophyll d-Dominating Prokaryotic Alga, Acaryochloris marina , 1998 .

[55]  S. Miyachi,et al.  Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll , 1997 .

[56]  R. Aebersold,et al.  原核緑藻植物(prochlorophyte)及び緑色植物の集光性クロロフィルa/b蛋白質は独自に進化した , 1996 .

[57]  P. Loach,et al.  Structure-Function Relationships in Core Light-Harvesting Complexes (LHI) As Determined by Characterization of the Structural Subunit and by Reconstitution Experiments , 1995 .

[58]  G. Schmidt,et al.  Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. , 1987, Proceedings of the National Academy of Sciences of the United States of America.