High-alumina tailored nuclear waste ceramics

A dense high-alumina ceramic has been developed for the immobilization of Savannah River Plant nuclear waste. The ceramic, fabricated by reactive hot-pressing, consists of four compatible crystalline phases, alumina, spinel, magnetoplumbite, and uraninite. The magnetoplumbite phase can incorporate the elements Cs, Sr, Si, Na, Ca, Ba, La, Nd, Mn, Fe, Ce, K, and Ni in its crystal structure, whereas the uraninite phase hosts the elements U, Th, and Zr. The remaining phases in the ceramic provide microstructural isolation of both the uraninite and magnetoplumbite. The mineralogy of the system is modeled by phase-compatibility investigations of the pseudoquaternary system Al2O3-Nd2O,-alkali + alkaline earth-(Mg, Fe, Ni)O, enabling the extent of waste loading and the phase stability to be predicted.

[1]  D. Clarke,et al.  Grain Boundary Phases in a Hot‐Pressed MgO Fluxed Silicon Nitride , 1977 .

[2]  D. Clarke On the detection of thin intergranular films by electron microscopy , 1979 .

[3]  D. Clarke,et al.  HIGH RESOLUTION TECHNIQUES AND APPLICATION TO NON-OXIDE CERAMICS , 1977 .

[4]  A. Perrotta,et al.  The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe12O19 , 1967 .

[5]  H. Müller-Buschbaum,et al.  Notizen: Zur Metallverteilung in SrFe7Al5O19. , 1976 .

[6]  M. Bettman,et al.  Structure of sodium oxide-4 magnesium oxide-15 aluminum oxide, a variant of .beta.-alumina , 1971 .

[7]  F. Clarke Residual strain and the fracture stress-grain size relationship in brittle solids , 1964 .

[8]  A. Heuer,et al.  Superplasticity in Ceramics , 1970 .

[9]  F. Lea The chemistry of cement and concrete , 1970 .

[10]  D. Clarke Observation of Microcracks and Thin Intergranular Films in Ceramics by Transmission Electron Microscopy , 1980 .

[11]  C. Jantzen,et al.  Solid-state reactions in the system CaONd2O3Fe2O3Al2O3 , 1979 .

[12]  R. A. Coyle,et al.  X-ray diffraction studies of irradiated beryllium oxide , 1962 .

[13]  D. Clarke Microfracture in brittle solids resulting from anisotropic shape changes , 1980 .

[14]  A.L.N. Stevels,et al.  The relation between crystal structure and luminescence in β-alumina and magnetoplumbite phases , 1974 .

[15]  D. G. Walker,et al.  EFFECT OF MICROSTRUCTURE ON THE IRRADIATION BEHAVIOUR OF BERYLLIUM OXIDE , 1963 .

[16]  R. Bradt,et al.  Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi2O5 , 1973 .

[17]  J. L. Sommerdijk,et al.  Cerium and terbium luminescence in LaMgAl11O19 , 1973 .

[18]  M. Breiter,et al.  Production of hydronium beta alumina from sodium beta alumina and characterization of conversion products , 1977 .

[19]  P. K. Smith,et al.  Preliminary evaluation of alternative forms for immobilization of Savannah River Plant high-level waste. [Eleven alternative solid forms] , 1979 .

[20]  A. E. Ringwood,et al.  The SYNROC process: A geochemical approach to nuclear waste immobilization. , 1979 .

[21]  E. Banks,et al.  New hexagonal ferrimagnetic oxides , 1957 .

[22]  J. Hutchison,et al.  Electron microscopy of the barium ferrite layer structures , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Unit cell dimensions in the system PbAl(12−x)FexO19 , 1967 .

[24]  M. Faucher,et al.  Optical and structural investigation of the lanthanum β-alumina phase doped with europium , 1976 .

[25]  G. Mccarthy Quartz matrix isolation of radioactive wastes , 1973 .

[26]  R. Davidge,et al.  Internal strain energy and the strength of brittle materials , 1968 .

[27]  H. Müller-Buschbaum,et al.  Notizen: CaFe6Al6O19 mit Magnetoplumbitstruktur / CaFe6Al6O19 with Magnetoplumbite Structure , 1977 .

[28]  R. Roy Rational Molecular Engineering of Ceramic Materials , 1977 .

[29]  A. Evans Microfracture from thermal expansion anisotropy—I. Single phase systems , 1978 .