Resonant photodiffractive four-wave mixing in semi-insulating GaAs/AlGaAs quantum wells.

We have performed photodiffractive four-wave mixing in semi-insulating multiple GaAs/AlGaAs quantum wells at a wavelength of 0.83 microm. The quantum wells were made semi-insulating by proton implantation, which introduces defects that are available to trap and store charge during holographic recording. The experiments demonstrate how photodiffractive behavior using the large resonant nonlinearities of quantum-confined excitons yields highly sensitive material for optical image processing. When pump powers of 1 mW/cm(2) are used, the measured sensitivity is 2 orders of magnitude greater than that of bulk, nonresonant photorefractive semiconductors.