Relating multiway discrepancy and singular values of nonnegative rectangular matrices

The minimum k -way discrepancy md k ( C ) of a rectangular matrix C of nonnegative entries is the minimum of the maxima of the within- and between-cluster discrepancies that can be obtained by simultaneous k -clusterings (proper partitions) of its rows and columns. In Theorem?2, irrespective of the size of C , we give the following estimate for the k th largest nontrivial singular value of the normalized matrix: s k ? 9 md k ( C ) ( k + 2 - 9 k ln md k ( C ) ) , provided 0 < md k ( C ) < 1 and k < rank ( C ) . This statement is a certain converse of Theorem 7 of Bolla (2014), and the proof uses some lemmas and ideas of Butler (2006), where the k = 1 case is treated. The result naturally extends to the singular values of the normalized adjacency matrix of a weighted undirected or directed graph.

[1]  Andrew Thomason Dense expanders and pseudo-random bipartite graphs , 1989, Discret. Math..

[2]  Marianna Bolla,et al.  Spectral Clustering and Biclustering , 2013 .

[3]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[4]  R. Graham,et al.  Quasi-random graphs with given degree sequences , 2008 .

[5]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[6]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[7]  Béla Bollobás,et al.  Random Graphs , 1985 .

[8]  M. Bolla Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables , 2013 .

[9]  Alexander Lubotzky,et al.  Mixing Properties and the Chromatic Number of Ramanujan Complexes , 2014, 1407.7700.

[10]  Marianna Bolla Noisy random graphs and their Laplacians , 2008, Discret. Math..

[11]  S. Butler Using discrepancy to control singular values for nonnegative matrices , 2006 .

[12]  Béla Bollobás,et al.  Colorings generated by monotone properties , 1998 .

[13]  László Lovász,et al.  Generalized quasirandom graphs , 2008, J. Comb. Theory, Ser. B.

[14]  Vojtech Rödl,et al.  Quasi-Randomness and Algorithmic Regularity for Graphs with General Degree Distributions , 2007, SIAM J. Comput..

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Béla Bollobás,et al.  Random Graphs: Preface to the Second Edition , 2001 .

[17]  Miklós Simonovits,et al.  Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.

[18]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[19]  A. Thomason Pseudo-Random Graphs , 1987 .

[20]  Marianna Bolla SVD, discrepancy, and regular structure of contingency tables , 2014, Discret. Appl. Math..

[21]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[22]  R. C. Thompson The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .

[23]  Béla Bollobás,et al.  Hermitian matrices and graphs: singular values and discrepancy , 2004, Discret. Math..

[24]  Marianna Bolla,et al.  Modularity spectra, eigen-subspaces, and structure of weighted graphs , 2013, Eur. J. Comb..