Limit cycles induced in type-1 linear systems with PID-type of relay feedback

This article investigates the limit cycles within type-1 linear systems under PID-type of relay feedback. The problem is generalised from the identification of friction models of servo mechanical systems via limit-cycle experiments under dual-channel relay feedback. Locations of limit cycles are given so that the exact durations between two consecutive switchings of relays can be determined via numerical computation. After this, local stability of limit cycles can be checked via the Jacobian of Poincaré map. Examples are analysed using proposed theorems.

[1]  Ai Poh Loh,et al.  On forced and subharmonic oscillations under relay feedback , 2008 .

[2]  G. Siouris,et al.  Nonlinear Control Engineering , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Chang-Chieh Hang,et al.  Relay feedback analysis for a class of servo plants , 2007 .

[4]  Christopher Edwards,et al.  Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[6]  Qing-Guo Wang,et al.  Relay Feedback: Analysis, Identification and Control , 2002 .

[7]  Kok Kiong Tan,et al.  Friction modeling and adaptive compensation using a relay feedback approach , 2001, IEEE Trans. Ind. Electron..

[8]  Mats Friman,et al.  A two-channel relay for autotuning , 1997 .

[9]  Zhengrong Xiang,et al.  Stability analysis of switched systems under dynamical dwell time control approach , 2009, Int. J. Syst. Sci..

[10]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[11]  Shiuh-Jer Huang,et al.  A new model-free adaptive sliding controller for active suspension system , 2008, Int. J. Syst. Sci..

[12]  M. I. Castellanos,et al.  Describing function analysis of second order sliding mode observers , 2006, 2006 American Control Conference.

[13]  Osvaldo Simeone,et al.  Relay Feedback Analysis Identification And Control , 2007 .

[14]  B. Bandyopadhyay,et al.  Discrete time output feedback sliding mode control for nonlinear MIMO system: a stepper motor case , 2008, Int. J. Syst. Sci..

[15]  Xingyu Wang,et al.  Sliding mode control design for uncertain delay systems with partial actuator degradation , 2009, Int. J. Syst. Sci..

[16]  Munther A. Dahleh,et al.  Global stability of relay feedback systems , 2001, IEEE Trans. Autom. Control..

[17]  Si-Lu Chen,et al.  Two-Layer Binary Tree Data-Driven Model for Valve Stiction , 2008 .

[18]  A. Megretski,et al.  Semi-global analysis of relay feedback systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[19]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[20]  Ai Poh Loh,et al.  Stability criteria and bounds for limit cycles of relay feedback systems , 2004 .

[21]  Tong Heng Lee,et al.  Relay Feedback: A Complete Analysis for First-Order Systems , 2004 .

[22]  Bin Yao,et al.  A Globally Stable High-Performance Adaptive Robust Control Algorithm With Input Saturation for Precision Motion Control of Linear Motor Drive Systems , 2007 .

[23]  Leonid M. Fridman,et al.  Generating Self-Excited Oscillations via Two-Relay Controller , 2009, IEEE Transactions on Automatic Control.

[24]  Karl Henrik Johansson,et al.  Fast switches in relay feedback systems , 1999, Autom..

[25]  Karl Johan Åström,et al.  Oscillations in Systems with Relay Feedback , 1993 .

[26]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[27]  Tryphon T. Georgiou,et al.  Robustness of a relaxation oscillator , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  Kok Kiong Tan,et al.  Automatic Friction Identification and Compensation with a Self-Adapting Dual Relay , 2003, Intell. Autom. Soft Comput..