Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons.

[1]  W. Denk,et al.  Imaging in vivo: watching the brain in action , 2008, Nature Reviews Neuroscience.

[2]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[3]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[4]  E. Chen REFRACTIVE INDICES OF THE RAT RETINAL LAYERS , 1993, Ophthalmic research.

[5]  C. Ogilvy,et al.  A quantitative analysis of the retrograde axonal transport of 4 different fluorescent dyes in peripheral sensory and motor neurons and lack of anterograde transport in the corticospinal system , 1988, Brain Research.

[6]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[7]  Jeff W. Lichtman,et al.  Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes , 1985, Nature.

[8]  Winfried Denk,et al.  Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Tsien,et al.  Visualization of Synaptic Activity in Hippocampal Slices with FM1-43 Enabled by Fluorescence Quenching , 1999, Neuron.

[10]  C. M. Davenport,et al.  Functional polarity of dendrites and axons of primate A1 amacrine cells , 2007, Visual Neuroscience.

[11]  Timothy R. Gosnell,et al.  Selected papers on ultrafast laser technology , 1991 .

[12]  R. Birge Photophysics and molecular electronic applications of the rhodopsins. , 1990, Annual review of physical chemistry.

[13]  R H Masland,et al.  Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  Jesper Munch,et al.  Wavelength dependence of twisted nematic liquid crystal phase modulators , 1998 .

[15]  R H Masland,et al.  The functional architecture of the retina. , 1986, Scientific American.

[16]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[17]  L. Dumont,et al.  Effects of PGE1 in experimental vasoconstrictive pulmonary hypertension. , 1993, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes.

[18]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.

[19]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[20]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[21]  T. Lamb,et al.  Photoreceptor spectral sensitivities: Common shape in the long-wavelength region , 1995, Vision Research.

[22]  J. Enoch Optical Properties of the Retinal Receptors , 1963 .

[23]  D. Baylor,et al.  Light path and photon capture in turtle photoreceptors. , 1975, The Journal of physiology.

[24]  Thomas Euler,et al.  Functional Stability of Retinal Ganglion Cells after Degeneration-Induced Changes in Synaptic Input , 2008, The Journal of Neuroscience.

[25]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[26]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[27]  G. Friedel,et al.  Les états mésomorphes de la matière , 1922 .

[28]  P. Detwiler,et al.  Longitudinal spread of second messenger signals in isolated rod outer segments of lizards , 1999, The Journal of physiology.

[29]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[30]  Технология International Electron Devices Meeting , 2010 .

[31]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[32]  P. Detwiler,et al.  Different Mechanisms Generate Maintained Activity in ON and OFF Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[33]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[34]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[35]  W. Stiles COLOR VISION: THE APPROACH THROUGH INCREMENT-THRESHOLD SENSITIVITY. , 1959 .

[36]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[37]  Idan Segev,et al.  Dendritic processing , 1998 .

[38]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Lewis A theoretical interpretation of spectral sensitivity curves at long wavelengths , 1955, The Journal of physiology.

[40]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[41]  M. J. Little,et al.  Liquid crystal pictorial display , 1973 .

[42]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[43]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[44]  Edward N. Pugh,et al.  From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG , 2004, Vision Research.

[45]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[46]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.