In this paper, we reveal that microtubules (MTs), reconstructed from tubulin in vitro in the presence of guanosine-5'-triphosphate (GTP), have a ring or spiral shape on a motor protein-fixed surface, and these MTs show biased motion in the counterclockwise direction. By cross-linking these MTs during the sliding motion, we obtained large ring-shaped MT assemblies, 1 approximately 12.6 microm in diameter. The ratio of the rings rotating in the counterclockwise direction to those rotating in the clockwise direction was approximately 3/1. Under optimized conditions, the ratio was as high as 14/1. Thus, we successfully obtained aggregated MTs with a large hierarchic structure that shows a preferential motion, through a dynamic process in vitro.