Silicon surface nano-oxidation using scanning probe microscopy

Abstract This paper focuses on the nano-oxidation of a silicon surface using scanning probe microscopes in air ambient and in UHV. Special emphasis is put in air ambient on the preparation of the surfaces and on the oxidation mechanism. The characteristics of the patterned nanostructures are reviewed versus the parameters which govern the process (tip–surface voltage, tip speed, humidity) as well as the kinetics models of the oxidation process. The oxide patterns can act as robust masks for dry or wet etching. Fabrication of nanostructures is presented and allows to realize electronic nanodevices. In UHV, there is no direct nano-oxidation of the surface by the microscope tip. First the surface is hydrogenated, second a local hydrogen desorption is performed with the STM tip and finally the bare desorbed area is exposed to oxygen. The desorption process is analyzed versus tip–surface voltage and tunneling current. The oxidation of a desorbed area using molecular or atomic oxygen is actually difficult to achieve.

[1]  L. Meda,et al.  Chemistry at silicon crystalline surfaces , 1995 .

[2]  R. E. Walkup,et al.  STM-induced H atom desorption from Si(100): isotope effects and site selectivity , 1996 .

[3]  Modification of n-Si(100) Surface by Scanning Tunneling Microscope Tip-Induced Anodization under Nitrogen Atmosphere , 1994 .

[4]  C. Quate,et al.  Centimeter scale atomic force microscope imaging and lithography , 1998 .

[5]  Y. Chabal,et al.  Ideal hydrogen termination of the Si (111) surface , 1990 .

[6]  P. Avouris,et al.  Scanning tunneling microscopy (STM) studies of the chemical vapor deposition of Ge on Si(111) from Ge hydrides and a comparison with molecular beam epitaxy , 1994 .

[7]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[8]  K. Oura,et al.  Hydrogen interaction with clean and modified silicon surfaces , 1999 .

[9]  Phaedon Avouris,et al.  AFM-tip-induced and current-induced local oxidation of silicon and metals , 1998 .

[10]  H. Yokoyama,et al.  Large scale high precision nano-oxidation using an atomic force microscope , 2004 .

[11]  A. E. Gordon,et al.  Mechanisms of surface anodization produced by scanning probe microscopes , 1995 .

[12]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[13]  E. Hartmann,et al.  Electron‐stimulated desorption of hydrogen from the Si(111) surface by scanning tunneling microscopy , 1996 .

[14]  H. Iwasaki,et al.  Electronic structures of the monohydride (2×1):H and the dihydride (1×1)𕘨H Si(001) surfaces studied by angle-resolved electron-energy-loss spectroscopy , 1983 .

[15]  M. Offenberg,et al.  Hydrocarbon reaction with HF‐cleaned Si(100) and effects on metal‐oxide‐semiconductor device quality , 1991 .

[16]  R. Ralich,et al.  Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon , 2003 .

[17]  J. Boland Scanning tunneling microscopy study of the adsorption and recombinative desorption of hydrogen from the Si(100)‐2×1 surface , 1992 .

[18]  J. Dagata,et al.  Density variations in scanned probe oxidation , 2000 .

[19]  Phaedon Avouris,et al.  Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication , 1997 .

[20]  Hiroyuki Sugimura,et al.  Chemical Approach to Nanofabrication: Modifications of Silicon Surfaces Patterned by Scanning Probe Anodization , 1995 .

[21]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .

[22]  D. Tonneau,et al.  Growth of silicon oxide on hydrogenated silicon during lithography with an atomic force microscope , 1998 .

[23]  M. Tabe UV ozone cleaning of silicon substrates in silicon molecular beam epitaxy , 1984 .

[24]  Gérald Dujardin,et al.  Atomic wire fabrication by STM induced hydrogen desorption , 2003 .

[25]  B. Legrand,et al.  Silicon nanowires with sub 10 nm lateral dimensions: From atomic force microscope lithography based fabrication to electrical measurements , 2002 .

[26]  High aspect ratio nano-oxidation of silicon with noncontact atomic force microscopy , 2003 .

[27]  Hyongsok T. Soh,et al.  Fabrication of 0.1 um metal oxide semiconductor field-effect transistors with the atomic force microscope , 1995 .

[28]  N. Barniol,et al.  Modification of HF‐treated silicon (100) surfaces by scanning tunneling microscopy in air under imaging conditions , 1992 .

[29]  E. Snow,et al.  Si nanostructures fabricated by anodic oxidation with an atomic force microscope and etching with an electron cyclotron resonance source , 1995 .

[30]  Y. Wada,et al.  Possible application of micromachine technology for nanometer lithography , 1998 .

[31]  H. Yokoyama,et al.  Voltage Modulation Scanned Probe Oxidation , 1998, Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135).

[32]  J. Lyding,et al.  Nanometer scale patterning and oxidation of silicon surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[33]  Ricardo Garcia,et al.  Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods , 2001 .

[34]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[35]  Becker,et al.  Atomic-scale conversion of clean Si(111):H-1 x 1 to Si(111)-2 x 1 by electron-stimulated desorption. , 1990, Physical review letters.

[36]  H. Lewerenz,et al.  Nano-oxidation of H-terminated p-Si(100): Influence of the humidity on growth and surface properties of oxide islands , 2001 .

[37]  Kinetics of field-induced oxidation of hydrogen-terminated Si(111) , 1996 .

[38]  Michael T. Postek,et al.  Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air , 1990 .

[39]  P. McMarr,et al.  Fabrication of silicon nanostructures with a scanning tunneling microscope , 1993 .

[40]  A. Baró,et al.  Intermittent contact scanning force microscopy: The role of the liquid necks , 1998 .

[41]  W. Kaiser,et al.  Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen-terminated silicon surfaces , 1988 .

[42]  Isao Takahashi,et al.  Infrared spectroscopy study of initial stages of oxidation of hydrogen‐terminated Si surfaces stored in air , 1994 .

[43]  Calvin F. Quate,et al.  Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor , 1996 .

[44]  J. Dagata,et al.  Current, charge, and capacitance during scanning probe oxidation of silicon. II: Electrostatic and meniscus forces acting on cantilever bending , 2004 .

[45]  R. Behm,et al.  Step-flow mechanism versus pit corrosion: scanning-tunneling microscopy observations on wet etching of Si(111) by HF solutions , 1991 .

[46]  H. Kanaya,et al.  Scanning tunneling microscopy observation of hydrogen‐terminated Si(111) surfaces at room temperature , 1994 .

[47]  Hiroshi Yokoyama,et al.  Understanding scanned probe oxidation of silicon , 1998 .

[48]  Christian Schönenberger,et al.  Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons , 1995 .

[49]  Ricardo Garcia,et al.  Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges , 1999 .

[50]  M. Grundner,et al.  Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces , 1989 .

[51]  L. Ley,et al.  Nanometer‐scale field‐induced oxidation of Si(111):H by a conducting‐probe scanning force microscope: Doping dependence and kinetics , 1995 .

[52]  Francesc Pérez-Murano,et al.  Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation , 1998 .

[53]  David R. Allee,et al.  Selective area oxidation of silicon with a scanning force microscope , 1993 .

[54]  P. Avouris,et al.  Cryogenic UHV-STM Study of Hydrogen and Deuterium Desorption from Si(100) , 1998 .

[55]  E. Dubois,et al.  Kinetics of scanned probe oxidation: Space-charge limited growth , 2000 .

[56]  H. Yokoyama,et al.  Current, charge, and capacitance during scanning probe oxidation of silicon. I: Maximum charge density and lateral diffusion , 2004 .

[57]  T. Hattori,et al.  Fabrication of nanometer‐scale structures using atomic force microscope with conducting probe , 1994 .

[58]  Wen-Feng Hsieh,et al.  Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching , 1999 .

[59]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[60]  G. S. Higashi,et al.  Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF , 1991 .

[61]  M. Henzler,et al.  Anisotropic etching versus interaction of atomic steps: Scanning tunneling microscopy observations on HF/NH4F‐treated Si(111) , 1993 .

[62]  B. M. Marder,et al.  Field emission characteristics of the scanning tunneling microscope for nanolithography , 1996 .

[63]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[64]  J. Lyding,et al.  Scanning tunneling microscope stimulated oxidation of silicon (100) surfaces , 1994 .

[65]  Eric S. Snow,et al.  The kinetics and mechanism of scanned probe oxidation of Si , 2000 .

[66]  Y. Chabal,et al.  Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology , 1988 .

[67]  Montserrat Calleja,et al.  Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: Size dependence on voltage and pulse duration , 2000 .

[68]  H. Sugimura,et al.  Maskless patterning of silicon surface based on scanning tunneling microscope tip‐induced anodization and chemical etching , 1994 .

[69]  Emmanuel Dubois,et al.  NANOOXIDATION USING A SCANNING PROBE MICROSCOPE : AN ANALYTICAL MODEL BASED ON FIELD INDUCED OXIDATION , 1997 .

[70]  K. Stokbro,et al.  STM-Induced Hydrogen Desorption via a Hole Resonance , 1998, cond-mat/9802304.

[71]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[72]  H. Ogawa,et al.  Initial stage of native oxide growth on hydrogen terminated silicon (111) surfaces , 1996 .

[73]  Y. Morita,et al.  Atomic resolution images of H‐terminated Si(111) surfaces in aqueous solutions , 1992 .

[74]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[75]  Te-Hua Fang,et al.  Mechanisms of nanooxidation of Si(100) from atomic force microscopy , 2004, Microelectron. J..

[76]  R. Penner,et al.  Scanning tunneling microscopy investigations of the Si(111) topography produced by etching in 40% NH4F: Observation of an optimum etch duration , 1993 .

[77]  P. Avouris,et al.  STM studies of Si(100)-2×1 oxidation: defect chemistry and Si ejection , 1992 .

[78]  J. Schneir,et al.  Pattern generation on semiconductor surfaces by a scanning tunneling microscope operating in air , 1991 .

[79]  Y. Wada,et al.  Scanning Tunneling Spectroscopy of Dangling-Bond Wires Fabricated on the Si(100)–2×1–H Surface , 1997 .

[80]  B. Legrand,et al.  Atomic force microscope tip-surface behavior under continuous bias or pulsed voltages in noncontact mode , 2000 .

[81]  E. Snow,et al.  Fabrication of Si nanostructures with an atomic force microscope , 1994 .

[82]  H. Yokoyama,et al.  Role of space charge in scanned probe oxidation , 1998 .

[83]  D. Stiévenard,et al.  Nanoscale desorption of H-passivated Si(100)-2×1 surfaces using an ultrahigh vacuum scanning tunneling microscope , 1999 .

[84]  Francesc Pérez-Murano,et al.  Measuring electrical current during scanning probe oxidation , 2003 .

[85]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[86]  R. Guckenberger,et al.  STM on Wet Insulators: Electrochemistry or Tunneling? , 1995, Science.

[87]  G. Abadal,et al.  Predictive model for scanned probe oxidation kinetics , 2000 .

[88]  T. Ohmi,et al.  Growth of native oxide on a silicon surface , 1990 .

[89]  P. Allongue,et al.  Etching mechanism and atomic structure of H–Si(111) surfaces prepared in NH4F , 1995 .

[90]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[91]  T. Thundat,et al.  Nanolithography on semiconductor surfaces under an etching solution , 1990 .

[92]  T. Hsieh,et al.  Search of optimum bias voltage for oxide patterning on Si using scanning tunneling microscopy in air , 2000 .

[93]  Hongjie Dai,et al.  Exploiting the properties of carbon nanotubes for nanolithography , 1998 .

[94]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[95]  M. Carbone,et al.  Atomic-scale desorption of H atoms from the Si(100)-2×1:H surface: Inelastic electron interactions , 2003 .

[96]  Peter Nordlander,et al.  Breaking individual chemical bonds via STM-induced excitations , 1996 .

[97]  Eric S. Snow,et al.  Fabrication of nanometer‐scale side‐gated silicon field effect transistors with an atomic force microscope , 1995 .

[98]  K. Yamashita,et al.  Si nanofabrication using AFM field enhanced oxidation and anisotropic wet chemical etching , 1997 .

[99]  Emmanuel Dubois,et al.  Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon , 1998 .

[100]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[101]  John R. Vig UV/ozone cleaning of surfaces , 1976 .

[102]  D. Adams,et al.  Nanometer‐scale lithography on Si(001) using adsorbed H as an atomic layer resist , 1996 .

[103]  M. Pashley,et al.  The effect of cooling rate on the surface reconstruction of annealed silicon(111) studied by scanning tunneling microscopy and low‐energy electron diffraction , 1988 .

[104]  B. Legrand,et al.  Nanooxidation of silicon with an atomic force microscope: A pulsed voltage technique , 1999 .

[105]  Lian Li,et al.  Etching of Si(111)‐(7×7) and Si(100)‐(2×1) surfaces by atomic hydrogen , 1995 .

[106]  H. Yokoyama,et al.  Faradaic current detection during anodic oxidation of the H-passivated p-si(001) surface with controlled relative humidity , 2004 .

[107]  Francesc Pérez-Murano,et al.  Nanometre-scale Oxidation of Silicon Surfaces by Dynamic Force Microscopy: Reproducibility, Kinetics and Nanofabrication , 1999 .

[108]  W. R. Runyan,et al.  Semiconductor integrated circuit processing technology , 1990 .

[109]  H. Sugimura,et al.  Fabrication of silicon nanostructures through scanning probe anodization followed by chemical etching , 1995 .