Devices and materials for high-performance mobile liquid crystal displays

Mobile liquid crystal displays (LCDs), often playing a role in hand-held computers, have become indispensable electronic tools to human beings in modern society. Innovative technological developments in the devices and materials have paved a successful road toward the development of mobile LCDs. Herein, after reviewing the trends and performance requirements of mobile LCDs, organic–inorganic materials as the key components of high performance mobile LCDs are addressed. Additionally, the developing trends in mobile LCDs are discussed with respect to these materials.

[1]  Chang Woo Woo,et al.  Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength , 2011 .

[2]  Chih-wei Chen,et al.  30.1: Fast Switching Fresnel Liquid Crystal Lens for Autostereoscopic 2D/3D Display , 2010 .

[3]  Sunyoup Lee,et al.  Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching , 1998 .

[4]  T. Mineta,et al.  A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal , 2008 .

[5]  Detlef Pauluth,et al.  Advanced liquid crystals for television , 2004 .

[6]  S. H. Lee,et al.  Viewing angle controllable liquid crystal display with high transmittance. , 2010, Optics express.

[7]  S. H. Lee,et al.  16.4L: Late‐News Paper: A Novel Wide‐Viewing‐Angle Technology: Ultra‐Trans View™ , 1999 .

[8]  M. Holl,et al.  Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition , 2009 .

[9]  Seok-Ho Hwang,et al.  Polymer‐Stabilized Chromonic Liquid‐Crystalline Polarizer , 2011 .

[10]  Chi-Huang Lin,et al.  Polarization-Independent Liquid-Crystal Fresnel Lenses Based on Surface-Mode Switching of 90$^{\circ}$ Twisted-Nematic Liquid Crystals , 2010, IEEE Photonics Technology Letters.

[11]  M. Schadt Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s , 1992 .

[12]  O. Yaroshchuk,et al.  Photoalignment of liquid crystals: basics and current trends , 2012 .

[13]  Seung Hee Lee,et al.  Recent Trends on Patterned Vertical Alignment (PVA) and Fringe-Field Switching (FFS) Liquid Crystal Displays for Liquid Crystal Television Applications , 2007, Journal of Display Technology.

[14]  Matthias Bremer,et al.  Difluorooxymethylene-Bridged Liquid Crystals: A Novel Synthesis Based on the Oxidative Alkoxydifluorodesulfuration of Dithianylium Salts. , 2001, Angewandte Chemie.

[15]  Chun-Ho Chen,et al.  A Field Sequential Color LCD Based on Color Fields Arrangement for Color Breakup and Flicker Reduction , 2007, Journal of Display Technology.

[16]  Byeong-Koo Kim,et al.  52.1: A Study of Electrostatic Mura Specified for IPS LCD , 2011 .

[17]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[18]  M. Schadt,et al.  Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers , 1992 .

[19]  Sampath Purushothaman,et al.  Atomic-beam alignment of inorganic materials for liquid-crystal displays , 2001, Nature.

[20]  S. J. Jang,et al.  16.1: Invited Paper: A Novel Outdoor Readability of Portable TFT‐LCD with AFFS Technology , 2006 .

[21]  S. H. Lee,et al.  Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays , 2011 .

[22]  Hae Sung Park,et al.  Ultra‐FFS TFT‐LCD with super image quality, fast response time, and strong pressure‐resistant characteristics , 2002 .

[23]  Jang-Kun Song,et al.  Technical evolution of liquid crystal displays , 2009 .

[24]  Wayne M. Gibbons,et al.  Surface-mediated alignment of nematic liquid crystals with polarized laser light , 1991, Nature.

[25]  Seung Hee Lee,et al.  Analysis of cell gap-dependent driving voltage in a fringe field-driven homogeneously aligned nematic liquid crystal display , 2003 .

[26]  S. H. Lee,et al.  29.2: 18.1″ Ultra‐FFS TFT‐LCD with Super Image Quality and Fast Response Time , 2001 .

[27]  Seung Ho Hong,et al.  An overview of product issues in wide‐viewing TFT‐LCDs , 2001 .

[28]  In-Jae Chung,et al.  Development of a 42‐in. 2‐D/3‐D switchable display using multi‐view technology for public‐information‐display applications , 2007 .

[29]  Shin‐Tson Wu,et al.  Liquid crystal display using combined fringe and in-plane electric fields , 2008 .

[30]  Shigeaki Mizushima,et al.  41.1: Distinguished Paper: The World's First Photo Alignment LCD Technology Applied to Generation Ten Factory , 2010 .

[31]  S. Hirota,et al.  Enhancement of Viewing Performance of New Transflective In-Plane Switching Liquid Crystal Displays Using In-Cell Retarder(s) , 2008 .

[32]  Jae-Hong Park,et al.  11.1: Invited Paper: The World's First Blue Phase Liquid Crystal Display , 2011 .

[33]  John L. Janning Thin film surface orientation for liquid crystals , 1972 .

[34]  V. Deline,et al.  Ion‐implanted selenium profiles in GaAs as measured by secondary ion mass spectrometry , 1978 .

[35]  J. Y. Lee,et al.  Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display , 2006 .

[36]  P. Bos,et al.  The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device , 1984 .

[37]  Yu‐June Wu,et al.  20.2: Stereoscopic 3D Display Using Patterned Retarder , 2008 .

[38]  G. Stemme,et al.  Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask , 1998 .