Computation of a Class of COntinued Fraction Constants
暂无分享,去创建一个
[1] D. Mayer,et al. On the thermodynamic formalism for the gauss map , 1990 .
[2] A. Manning,et al. Ergodic theory, symbolic dynamics, and hyperbolic spaces , 1991 .
[3] Leo F. Boron,et al. Positive solutions of operator equations , 1964 .
[4] Philippe Flajolet,et al. Continued Fraction Algorithms, Functional Operators, and Structure Constants , 1998, Theor. Comput. Sci..
[5] Brigitte Vallée,et al. Algorithms for Computing Signs of 2×2 Determinants: Dynamics and Average-Case Analysis , 1997, ESA.
[6] Alain Largillier,et al. Spectral Computations for Bounded Operators , 2001 .
[7] E. Wirsing. On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces , 1974 .
[8] Brigitte Vallée,et al. Dynamical analysis of a class of Euclidean algorithms , 2003, Theor. Comput. Sci..
[9] B. Vallée. Dynamique des fractions continues à contraintes périodiques , 1998 .
[10] P. Flajolet,et al. Continued Fractions, Comparison Algorithms, and Fine Structure Constants , 2000 .
[11] T. Cusick. Continuants with bounded digits—II , 1977 .
[12] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[13] Brigitte Vallée,et al. Euclidean algorithms are Gaussian , 2003, ArXiv.
[14] J. Dixon. The number of steps in the Euclidean algorithm , 1970 .
[15] D. Mayer,et al. On composition operators on Banach spaces of holomorphic functions , 1980 .
[16] K. Briggs. A precise computation of the Gauss-Kuzmin-Wirsing constant (preliminary report) , 2003 .
[17] O. M. Fomenko. On the problem of Gauss , 1961 .
[18] R. Bumby. Hausdorff dimension of sets arising in number theory , 1985 .
[19] Philippe Flajolet,et al. An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction , 1997, Combinatorics, Probability and Computing.
[20] M. Urbanski,et al. On Transfer Operators for Continued Fractions with Restricted Digits , 2003 .
[21] B. Vallée. Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss , 1997 .
[22] D. Hensley. A Polynomial Time Algorithm for the Hausdorff Dimension of Continued Fraction Cantor Sets , 1996 .
[23] Steven R. Finch,et al. Mathematical constants , 2005, Encyclopedia of mathematics and its applications.
[24] M. Pollicott,et al. Computing the dimension of dynamically defined sets: E_2 and bounded continued fractions , 2001, Ergodic Theory and Dynamical Systems.
[25] P. Levy. Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue , 1929 .
[26] D. Mayer. Spectral properties of certain composition operators arising in statistical mechanics , 1979 .
[27] A. Grothendieck,et al. Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .