Decoding the cortical transformations for visually guided reaching in 3D space.

To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.

[1]  Francesco Lacquaniti,et al.  Multiple levels of representation of reaching in the parieto-frontal network. , 2003, Cerebral cortex.

[2]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Paul Cisek,et al.  Modest gaze-related discharge modulation in monkey dorsal premotor cortex during a reaching task performed with free fixation. , 2002, Journal of neurophysiology.

[4]  J. Kalaska,et al.  Cerebral cortical mechanisms of reaching movements. , 1992, Science.

[5]  Philip N. Sabes,et al.  Flexible strategies for sensory integration during motor planning , 2005, Nature Neuroscience.

[6]  T. Sejnowski,et al.  Neural network model of visual cortex for determining surface curvature from images of shaded surfaces , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[7]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[8]  J D Crawford,et al.  Curvature of Visual Space Under Vertical Eye Rotation: Implications for Spatial Vision and Visuomotor Control , 2000, The Journal of Neuroscience.

[9]  Ian P. Howard,et al.  The cyclopean eye in vision: The new and old data continue to hit you right between the eyes , 2010 .

[10]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[11]  R. Andersen,et al.  The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements , 2006, Neuropsychologia.

[12]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[13]  Tirin Moore,et al.  Complex movements evoked by microstimulation of the ventral intraparietal area , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Emanuel Todorov,et al.  Cosine Tuning Minimizes Motor Errors , 2002, Neural Computation.

[15]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[16]  Gian F. Poggio Mechanisms of Stereopsis in Monkey Visual Cortex , 1995 .

[17]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[18]  G E Alexander,et al.  Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. , 1997, Journal of neurophysiology.

[19]  K. Hepp,et al.  Deficits in torsional and vertical rapid eye movements and shift of Listing's plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus , 2004, Experimental Brain Research.

[20]  Driss Boussaoud,et al.  Effects of gaze on apparent visual responses of frontal cortex neurons , 2004, Experimental Brain Research.

[21]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[22]  P. O. Bishop,et al.  Analysis of retinal correspondence by studying receptive fields of rinocular single units in cat striate cortex , 2004, Experimental Brain Research.

[23]  P. O. Bishop,et al.  Binocular interaction on single units in cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence , 2004, Experimental Brain Research.

[24]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[25]  M. Graziano,et al.  Complex Movements Evoked by Microstimulation of Precentral Cortex , 2002, Neuron.

[26]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[27]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[28]  S. Scott Vision to action: new insights from a flip of the wrist , 2001, Nature Neuroscience.

[29]  A. Fuchs,et al.  Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal. , 1981, Journal of neurophysiology.

[30]  S. Scott The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates , 2003, Current Opinion in Neurobiology.

[31]  G. S. Russo,et al.  Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. , 1996, Journal of neurophysiology.

[32]  E. M. Klier,et al.  Human oculomotor system accounts for 3-D eye orientation in the visual-motor transformation for saccades. , 1998, Journal of neurophysiology.

[33]  E Guigon,et al.  Recoding arm position to learn visuomotor transformations. , 2001, Cerebral cortex.

[34]  Michael Vesia,et al.  Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex. , 2006, Journal of neurophysiology.

[35]  Byron M. Yu,et al.  Reference frames for reach planning in macaque dorsal premotor cortex. , 2007, Journal of neurophysiology.

[36]  Michael A. Smith,et al.  Functional organization within a neural network trained to update target representations across 3-D saccades , 2007, Journal of Computational Neuroscience.

[37]  A. V. D. Berg,et al.  Binocular eye orientation during fixations: Listing's law extended to include eye vergence , 1993, Vision Research.

[38]  Carol L Colby,et al.  Active Vision in Parietal and Extrastriate Cortex , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[39]  S. Scott,et al.  Cortical control of reaching movements , 1997, Current Opinion in Neurobiology.

[40]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[41]  A. B. Mayer,et al.  Early coding of reaching: frontal and parietal association connections of parieto‐occipital cortex , 1999, The European journal of neuroscience.

[42]  Christophe Jouffrais,et al.  Neuronal activity related to eye-hand coordination in the primate premotor cortex , 1999, Experimental Brain Research.

[43]  J D Crawford,et al.  Proprioceptive guidance of saccades in eye-hand coordination. , 2006, Journal of neurophysiology.

[44]  Julio C. Martinez-Trujillo,et al.  Frames of Reference for Eye-Head Gaze Commands in Primate Supplementary Eye Fields , 2004, Neuron.

[45]  H. Kornhuber,et al.  Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback , 2004, Biological Cybernetics.

[46]  Iwona Stepniewska,et al.  Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[48]  J. Kalaska,et al.  Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. , 2000, Journal of neurophysiology.

[49]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[50]  Gunnar Blohm,et al.  Computations for geometrically accurate visually guided reaching in 3-D space. , 2007, Journal of vision.

[51]  Y. Rossetti,et al.  Optic ataxia errors depend on remapped, not viewed, target location , 2005, Nature Neuroscience.

[52]  W. Wheeler,et al.  Dissociation between hand motion and population vectors from neural activity in motor cortex , 2022 .

[53]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[54]  A. V. van den Berg,et al.  Binocular eye orientation during fixations: Listing's law extended to include eye vergence. , 1993, Vision research.

[55]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[56]  C. Gielen,et al.  Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head , 2003, Experimental Brain Research.

[57]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[58]  A. Pellionisz,et al.  Tensor network theory of the metaorganization of functional geometries in the central nervous system , 1985, Neuroscience.

[59]  J D Crawford,et al.  Spatial transformations for eye-hand coordination. , 2004, Journal of neurophysiology.

[60]  F. Lacquaniti,et al.  Parieto-frontal coding of reaching: an integrated framework , 1999, Experimental Brain Research.

[61]  J. Crawford,et al.  The oculomotor neural integrator uses a behavior-related coordinate system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Michael A. Smith,et al.  Self-Organizing Task Modules and Explicit Coordinate Systems in a Neural Network Model for 3-D Saccades , 2001, Journal of Computational Neuroscience.

[63]  M. Landy,et al.  The effect of viewpoint on perceived visual roughness. , 2007, Journal of vision.

[64]  Hideo Sakata,et al.  Neural mechanisms of three-dimensional vision , 2005, Neuroscience Research.

[65]  M. Schlag-Rey,et al.  Evidence for a supplementary eye field. , 1987, Journal of neurophysiology.

[66]  N. Burgess,et al.  Spatial memory: how egocentric and allocentric combine , 2006, Trends in Cognitive Sciences.

[67]  Kikuro Fukushima,et al.  Ocular torsion produced by unilateral chemical inactivation of the interstitial nucleus of Cajal in chronically labyrinthectomized cats , 1992, Neuroscience Research.

[68]  Katsumi Aoki,et al.  Recent development of flow visualization , 2004, J. Vis..

[69]  Hiroshi Ono,et al.  The cyclopean eye is relevant for predicting visual direction , 2005, Vision Research.

[70]  K. Fukushima,et al.  Spatial properties of vertical eye movement-related neurons in the region of the interstitial nucleus of Cajal in awake cats , 2004, Experimental Brain Research.

[71]  T. Vilis,et al.  Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal , 1991, Science.

[72]  D Guitton,et al.  Visual-motor transformations required for accurate and kinematically correct saccades. , 1997, Journal of neurophysiology.

[73]  T. Ebner,et al.  Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. , 1993, Journal of neurophysiology.

[74]  P. Medendorp,et al.  Visuospatial updating of reaching targets in near and far space , 2002, Neuroreport.

[75]  J. Kalaska,et al.  Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. , 2000, Journal of neurophysiology.

[76]  L F Abbott,et al.  Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. , 2001, Progress in brain research.

[77]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[78]  Tamar Flash,et al.  Computational approaches to motor control , 2001, Current Opinion in Neurobiology.

[79]  D. Amit,et al.  The eye and the hand: neural mechanisms and network models for oculomanual coordination in parietal cortex. , 2003, Cerebral cortex.

[80]  D. Hoffman,et al.  Sensorimotor transformations in cortical motor areas , 2003, Neuroscience Research.

[81]  K. Hepp,et al.  Theoretical explanations of Listing's law and their implication for binocular vision , 1995, Vision Research.

[82]  T Vilis,et al.  Symmetry of oculomotor burst neuron coordinates about Listing's plane. , 1992, Journal of neurophysiology.

[83]  R Caminiti,et al.  Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. , 2001, Cerebral cortex.

[84]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[85]  Philip N. Sabes,et al.  Multisensory Integration during Motor Planning , 2003, The Journal of Neuroscience.

[86]  J. D. Crawford,et al.  Eye-hand Coordination During Reaching in 3D Space: Binocular Fixation and Internal Models , 2002 .

[87]  R. Andersen,et al.  Dorsal Premotor Neurons Encode the Relative Position of the Hand, Eye, and Goal during Reach Planning , 2006, Neuron.

[88]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[89]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[90]  A J Pellionisz,et al.  Geometrical approach to neural net control of movements and posture. , 1993, Progress in brain research.

[91]  E. J. Tehovnik,et al.  Saccadic eye movements evoked by microstimulation of striate cortex , 2003, The European journal of neuroscience.

[92]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[93]  Graeme D. Jackson,et al.  Head Position Modulates Activity in the Human Parietal Eye Fields , 2003, NeuroImage.

[94]  E. Todorov Direct cortical control of muscle activation in voluntary arm movements: a model , 2000, Nature Neuroscience.

[95]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[96]  L. Snyder Coordinate transformations for eye and arm movements in the brain , 2000, Current Opinion in Neurobiology.

[97]  J. F. Soechting,et al.  Transformation from Head- to Shoulder-Centered Representation of Target Direction in Arm Movements , 1990, Journal of Cognitive Neuroscience.

[98]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[99]  R. Wurtz,et al.  Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. , 1997, Journal of neurophysiology.

[100]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[101]  J D Crawford,et al.  Role of eye, head, and shoulder geometry in the planning of accurate arm movements. , 2002, Journal of neurophysiology.

[102]  K. Naka,et al.  An attempt to analyse colour reception by electrophysiology , 1966, The Journal of physiology.

[103]  K. Shenoy,et al.  Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. , 2007, Journal of neurophysiology.

[104]  Gunnar Blohm,et al.  Influence of initial hand and target position on reach errors in optic ataxic and normal subjects. , 2007, Journal of vision.

[105]  R. Andersen,et al.  Models of the Posterior Parietal Cortex Which Perform Multimodal Integration and Represent Space in Several Coordinate Frames , 2000, Journal of Cognitive Neuroscience.

[106]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[107]  A. B. Mayer,et al.  Visuomotor transformations: early cortical mechanisms of reaching , 1998, Current Opinion in Neurobiology.

[108]  Michael A Smith,et al.  Distributed population mechanism for the 3-D oculomotor reference frame transformation. , 2005, Journal of neurophysiology.

[109]  Thomas Haslwanter,et al.  Three-dimensional eye position during static roll and pitch in humans , 2001, Vision Research.

[110]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[111]  Douglas B. Tweed,et al.  Non-commutativity in the brain , 1999, Nature.

[112]  J Tanji,et al.  Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. , 1997, Journal of neurophysiology.

[113]  S. P. Wise,et al.  Primate frontal cortex: effects of stimulus and movement , 2004, Experimental Brain Research.

[114]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[115]  D. Hoffman,et al.  Direction of action is represented in the ventral premotor cortex , 2001, Nature Neuroscience.

[116]  H. Ono,et al.  The cyclopean eye vs. the sighting-dominant eye as the center of visual direction , 1982, Perception & psychophysics.

[117]  M. Rushworth,et al.  TMS in the parietal cortex: Updating representations for attention and action , 2006, Neuropsychologia.

[118]  V. Henn,et al.  Static roll and pitch in the monkey: Shift and rotation of listing's plane , 1992, Vision Research.

[119]  Madeleine Schlag-Rey,et al.  Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. , 2006, Journal of neurophysiology.

[120]  F Bremmer,et al.  Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. , 1998, Journal of neurophysiology.

[121]  Paul van Donkelaar,et al.  Gaze-Dependent Deviation in Pointing Induced by Transcranial Magnetic Stimulation Over the Human Posterior Parietal Cortex , 2005, Journal of motor behavior.

[122]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[123]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.