Transceivers for 6G Wireless Communications: Challenges and Design Solutions

Sixth-generation (6G) wireless communication has begun to emerge to push the speed and data rate achieved in 5G by, at least, an order of magnitude, fulfilling the goal of fully scalable and adaptive wireless infrastructures with small cells interconnected through distributed base-stations and relay networks. Wireless transceivers, as the core enabling ingredient of 6G, should be able to handle tens of gigabit-per-second data rate in ways that are both power and spectrally efficient. The paper brings to the open the unmitigated shortcomings of conventional transceiver architectures for above 50 gigabit-per-second wireless applications, unfolds challenges in designing transceivers for 6G (and beyond) and provides pathways to address these impediments. Furthermore, it goes through design challenges and candidate solutions for key circuit blocks of a transceiver including front-end amplifiers, local oscillator (LO) circuit and LO distribution network, and antennas intended for frequencies above 100 GHz.

[1]  Herbert Zirath,et al.  A $D$-Band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset , 2016, IEEE Transactions on Microwave Theory and Techniques.

[2]  Behzad Razavi,et al.  Lower Bounds on Power Consumption of Clock Generators for ADCs , 2020, 2020 IEEE International Symposium on Circuits and Systems (ISCAS).

[3]  Jason Cong,et al.  A 20Gb/s 79.5mW 127GHz CMOS transceiver with digitally pre-distorted PAM-4 modulation for contactless communications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[4]  Hiroyuki Takahashi,et al.  120-GHz-Band Fully Integrated Wireless Link Using QSPK for Realtime 10-Gbit/s Transmission , 2013, IEEE Transactions on Microwave Theory and Techniques.

[5]  N. Sarmah,et al.  A 240 GHz high-speed transmission link with highly-integrated transmitter and receiver modules in SiGe HBT technology , 2017, 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[6]  Kenichi Okada,et al.  300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[7]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[8]  B. Heinemann,et al.  A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology , 2019, IEEE Microwave and Wireless Components Letters.

[9]  Kenichi Okada,et al.  64-QAM 60-GHz CMOS Transceivers for IEEE 802.11ad/ay , 2017, IEEE Journal of Solid-State Circuits.

[10]  Tadao Nagatsuma,et al.  30-Gbit/s wireless transmission over 10 meters at 300 GHz , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[11]  Zheng Wang,et al.  A Study of Operating Condition and Design Methods to Achieve the Upper Limit of Power Gain in Amplifiers at Near- $f_{max}$ Frequencies , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  J. Mazurier,et al.  22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[13]  Kenichi Okada,et al.  A 120Gb/s 16QAM CMOS millimeter-wave wireless transceiver , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[14]  Yves Baeyens,et al.  A 16-Element W-Band Phased-Array Transceiver Chipset With Flip-Chip PCB Integrated Antennas for Multi-Gigabit Wireless Data Links , 2018, IEEE Transactions on Microwave Theory and Techniques.

[15]  Ali M. Niknejad,et al.  A 240 GHz Fully Integrated Wideband QPSK Receiver in 65 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[16]  Kosuke Katayama,et al.  A 32Gbit/s 16QAM CMOS receiver in 300GHz band , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[17]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .

[18]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.

[19]  Zhiming Chen,et al.  A BiCMOS W-Band 2×2 Focal-Plane Array With On-Chip Antenna , 2012, IEEE Journal of Solid-State Circuits.

[20]  Munkyo Seo,et al.  InP HBT Technologies for THz Integrated Circuits , 2017, Proceedings of the IEEE.

[21]  Bo Zhang,et al.  3.2 A 320mW 32Gb/s 8b ADC-based PAM-4 analog front-end with programmable gain control and analog peaking in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[22]  Payam Heydari,et al.  A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter With Direct RF-8PSK Modulation , 2020, IEEE Journal of Solid-State Circuits.

[23]  Heng Zhang,et al.  29.2 A transmitter and receiver for 100Gb/s coherent networks with integrated 4×64GS/s 8b ADCs and DACs in 20nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[24]  Janusz Grzyb,et al.  A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[25]  S. Shahramian,et al.  D-band Phased-Array TX and RX Front Ends Utilizing Radio-on-Glass Technology , 2020, 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[26]  Zhiming Chen,et al.  W-Band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[27]  Ali M. Niknejad,et al.  A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[28]  B. Heinemann,et al.  Towards 100 Gbps: A Fully Electronic 90 Gbps One Meter Wireless Link at 230 GHz , 2018, 2018 48th European Microwave Conference (EuMC).

[29]  Kosuke Katayama,et al.  A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels , 2016, IEEE Journal of Solid-State Circuits.

[30]  B. Heinemann,et al.  Performance Evaluation of a 32-QAM 1-Meter Wireless Link Operating at 220–260 GHz with a Data-Rate of 90 Gbps , 2018, 2018 Asia-Pacific Microwave Conference (APMC).

[31]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[32]  Zhiming Chen,et al.  An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[33]  Payam Heydari,et al.  A 115–135-GHz 8PSK Receiver Using Multi-Phase RF-Correlation-Based Direct-Demodulation Method , 2019, IEEE Journal of Solid-State Circuits.

[34]  Payam Heydari,et al.  Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links , 2019, IEEE Journal of Solid-State Circuits.

[35]  Zhaocheng Wang,et al.  Terahertz Terabit Wireless Communication , 2011, IEEE Microwave Magazine.

[36]  Thomas Toifl,et al.  A 24–72-GS/s 8-b Time-Interleaved SAR ADC With 2.0–3.3-pJ/Conversion and >30 dB SNDR at Nyquist in 14-nm CMOS FinFET , 2018, IEEE Journal of Solid-State Circuits.

[37]  Ming Zhang,et al.  Understanding data center traffic characteristics , 2010, CCRV.

[38]  Kondo Satoshi,et al.  A 128-QAM 60GHz CMOS Transceiver for IEEE802.11ay with Calibration of LO Feedthrough and I/Q Imbalance , 2017 .

[39]  Corrado Carta,et al.  A Low-Power SiGe BiCMOS 190-GHz Transceiver Chipset With Demonstrated Data Rates up to 50 Gbit/s Using On-Chip Antennas , 2017, IEEE Transactions on Microwave Theory and Techniques.

[40]  Marinette Besson,et al.  A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory , 2011, 2011 IEEE International Solid-State Circuits Conference.

[41]  T. Schneider,et al.  All Active MMIC-Based Wireless Communication at 220 GHz , 2011, IEEE Transactions on Terahertz Science and Technology.