Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi

[1]  S. Haigh,et al.  Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry. , 2018, Small.

[2]  A. Sánchez,et al.  Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function , 2017, Nature Communications.

[3]  Q. Jiang,et al.  Integrated Cu3N porous nanowire array electrode for high-performance supercapacitors , 2017 .

[4]  G. Gadd,et al.  Biosynthesis of copper carbonate nanoparticles by ureolytic fungi , 2017, Applied Microbiology and Biotechnology.

[5]  M. Biesinger Advanced analysis of copper X‐ray photoelectron spectra , 2017 .

[6]  Jeffrey J. Gray,et al.  Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate , 2017, Nature Communications.

[7]  Zhenghe Xu,et al.  Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation , 2016 .

[8]  Rajender S Varma,et al.  Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. , 2016, Chemical reviews.

[9]  Yuxing Zhang,et al.  Spherical CuO superstructures originating from hierarchical malachite microspheres by different post-treatment routes: a comparison study of the morphology and the catalytic property , 2016 .

[10]  Ziqiu Wang,et al.  A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite. , 2015, Journal of materials chemistry. B.

[11]  G. Gadd,et al.  CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. , 2015, Environmental microbiology.

[12]  C. Tung,et al.  Copper(I) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. , 2015, Chemical communications.

[13]  G. Gadd,et al.  Biomineralization of metal carbonates by Neurospora crassa. , 2014, Environmental science & technology.

[14]  A. Gromov,et al.  Self-preservation strategies during bacterial biomineralization with reference to hydrozincite and implications for fossilization of bacteria , 2014, Journal of The Royal Society Interface.

[15]  B. Ngwenya,et al.  The role of bacterial extracellular polymeric substances in geomicrobiology , 2014 .

[16]  W. Chrzanowski,et al.  Layered silicate clay functionalized with amino acids: wound healing application , 2014 .

[17]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[18]  Kamyar Khoshnevisan,et al.  Fabrication of capped gold nanoparticles by using various amino acids , 2014 .

[19]  J. Arthur,et al.  The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle , 2014, PloS one.

[20]  Yeasin Sikdar,et al.  Malachite nanoparticle: A potent surface for the adsorption of xanthene dyes , 2013 .

[21]  E. Sacher,et al.  X‑ray Photoelectron Spectroscopic and Transmission Electron Microscopic Characterizations of Bacteriophage−Nanoparticle Complexes for Pathogen Detection , 2013 .

[22]  I. Sóvágó,et al.  Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes , 2012 .

[23]  Jong Seto,et al.  Single Amino Acids as Additives Modulating CaCO3 Mineralization , 2012 .

[24]  Q. Huang,et al.  Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost , 2012, Environmental technology.

[25]  J. Lloyd,et al.  Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens , 2011, Nanotechnology.

[26]  M. Avalos-Borja,et al.  Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. , 2011, Colloids and surfaces. B, Biointerfaces.

[27]  J. Raven,et al.  Geomicrobiology of Eukaryotic Microorganisms , 2010 .

[28]  Rasesh Y Parikh,et al.  Biological synthesis of metallic nanoparticles. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[29]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[30]  Bedabrata Saha,et al.  Malachite Nanoparticle: A New Basic Hydrophilic Surface for pH-Controlled Adsorption of Bovine Serum Albumin with a High Loading Capacity , 2009 .

[31]  T. Hyeon,et al.  Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals , 2009 .

[32]  Laurent Charlet,et al.  The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model , 2008, American Journal of Science.

[33]  T. Hyeon,et al.  Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. , 2008, Accounts of chemical research.

[34]  D. Sparks,et al.  Nanominerals, Mineral Nanoparticles, and Earth Systems , 2008, Science.

[35]  M. Trau,et al.  Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  A. Pawlukojć,et al.  l-Cysteine: Neutron spectroscopy, Raman, IR and ab initio study. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  D. Xue,et al.  Fabrication of malachite with a hierarchical sphere-like architecture. , 2005, The journal of physical chemistry. B.

[38]  V. Panyushkin,et al.  Synthesis and Study of Copper(II) Complexes with Aspartic Acid, Serine, and Valine , 2005 .

[39]  A. Corazza,et al.  Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. , 2004, Journal of inorganic biochemistry.

[40]  É. Verrecchia,et al.  Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino Acids , 2003 .

[41]  N. Inestrosa,et al.  Copper reduction by copper binding proteins and its relation to neurodegenerative diseases , 2003, Biometals.

[42]  R. Frost,et al.  Thermal stability of azurite and malachite in relation to the formation of mediaeval glass and glazes , 2002 .

[43]  R. Frost,et al.  Thermal activation of copper carbonate , 2002 .

[44]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[45]  Zbigniew Adamczyk,et al.  Application of the DLVO theory for particle deposition problems , 1999 .

[46]  O. Yamauchi,et al.  Stability constants of metal complexes of amino acids with charged side chains - Part I: Positively charged side chains (Technical Report) , 1996 .

[47]  G. Berthon,et al.  Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (Technical Report) , 1995 .

[48]  C. Serna,et al.  The relationship of particle morphology and structure of basic copper(II) compounds obtained by homogeneous precipitation , 1994 .

[49]  J. Navarrete,et al.  Ir and Raman spectra of L‐aspartic acid and isotopic derivatives , 1994 .

[50]  J. Stoch,et al.  The effect of carbonate contaminations on the XPS O 1s band structure in metal oxides , 1991 .

[51]  G. Marrosu,et al.  Thermal analysis of some α-amino acids using simultaneous TG-DSC apparatus. The use of dynamic thermogravimetry to study the chemical kinetics of solid state decomposition , 1990 .

[52]  C. Wagner,et al.  Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis , 1980 .

[53]  P. Süsse Verfeinerung der Kristallstruktur des Malachits, Cu2(OH)2CO3 , 1966, Naturwissenschaften.

[54]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[55]  K. Cedzyńska,et al.  Factors affecting copper(II) reduction in aqueous solutions , 2013 .

[56]  G. Gadd Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. , 2007, Mycological research.