Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change.

Reversible dynamic control of structure is a significant challenge in molecular nanotechnology. Previously, we have reported a mechanically induced continuous (analog) conformational variation in an amphiphilic binaphthyl, where closing of molecular pliers was achieved by compression of a molecular monolayer composed of these molecules at the air-water interface. In this work we report that a phase transition induced by an applied mechanical stress enables discontinuous digital (1/0) opening of simple binaphthyl molecular pliers. A lipid matrix at the air-water interface promotes the formation of quasi-stable nanocrystals, in which binaphthyl molecules have an open transoid configuration. The crystallization/dissolution of quasi-stable binaphthyl crystals with accompanying conformational change is reversible and repeatable.

[1]  J. Cartwright,et al.  Chiral symmetry breaking and polymorphism in 1,1'-binaphthyl melt crystallization. , 2005, The journal of physical chemistry. B.

[2]  A. Warshel,et al.  The Physics and Physical Chemistry of Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  T. Aida,et al.  Mechanical twisting of a guest by a photoresponsive host , 2006, Nature.

[4]  I. Hirasawa,et al.  The relationship between crystal morphology and XRD peak intensity on CaSO4·2H2O , 2013 .

[5]  Hiroko Yamada,et al.  Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states , 2014, Nature Communications.

[6]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[7]  R. Kuroda,et al.  The circular dichroism, crystal and molecular structure, and absolute configuration, of dinaphtho[2,1-c,1',2'-e]dithiin , 1981 .

[8]  Taizo Mori,et al.  Helicity-Controlled Liquid Crystal Reaction Field Using Nonbridged and Bridged Binaphthyl Derivatives Available for Synthesis of Helical Conjugated Polymers , 2008 .

[9]  Heather J Kulik,et al.  Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer , 2014, Nature Chemistry.

[10]  K. Akagi Helical polyacetylene: asymmetric polymerization in a chiral liquid-crystal field. , 2009, Chemical reviews.

[11]  Katsuhiko Ariga,et al.  A paradigm shift in the field of molecular recognition at the air-water interface: from static to dynamic. , 2006, Soft matter.

[12]  Paul S Weiss,et al.  Controlling Motion at the Nanoscale: Rise of the Molecular Machines. , 2015, ACS nano.

[13]  D. Bougeard,et al.  Vibrational spectra and conformational phase transition of crystalline l-methionine , 1987 .

[14]  A. Sharma,et al.  Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands. , 2016, ACS nano.

[15]  L. Pu,et al.  A cyclohexyl-1,2-diamine-derived bis(binaphthyl) macrocycle: enhanced sensitivity and enantioselectivity in the fluorescent recognition of mandelic acid. , 2005, Angewandte Chemie.

[16]  C. Seidel,et al.  Mechanochemistry: Molecules under pressure. , 2014, Nature nanotechnology.

[17]  M. Jiang,et al.  Coupling of phase transitions in Langmuir monolayers , 1999 .

[18]  Katsuhiko Ariga,et al.  Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. , 2015, Angewandte Chemie.

[19]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[20]  Xiongwu Wu,et al.  Conformation Changes, Complexation, and Phase Transition in Matrix-Assisted Laser Desorption , 2001 .

[21]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[22]  K. Ariga,et al.  Conformational interchange of a carbohydrate by mechanical compression at the air-water interface. , 2014, Physical chemistry chemical physics : PCCP.

[23]  Jos C. M. Kistemaker,et al.  A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle , 2016 .

[24]  K. Ariga,et al.  Dendritic Amphiphiles: Dendrimers Having an Amphiphile Structure in Each Unit. , 2000 .

[25]  A. Spirin Ribosome as a molecular machine , 2002, FEBS letters.

[26]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[27]  Colin Nuckolls,et al.  Dependence of single-molecule junction conductance on molecular conformation , 2006, Nature.

[28]  Euan R. Kay,et al.  Die Evolution molekularer Maschinen , 2015 .

[29]  Michael H. Huang,et al.  Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity , 2009 .

[30]  Ryoji Noyori Prof. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .

[31]  Hideo Taka,et al.  Synthesis of disilanyl double-pillared bisdibenzofuran with a high triplet energy. , 2012, Organic letters.

[32]  Barbara Zdrazil,et al.  A Binding Mode Hypothesis of Tiagabine Confirms Liothyronine Effect on γ-Aminobutyric Acid Transporter 1 (GAT1) , 2015, Journal of medicinal chemistry.

[33]  Horst Kessler,et al.  Conformation and Biological Activity of Cyclic Peptides , 1982 .

[34]  Christoph Weder,et al.  Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials , 2016, Advanced materials.

[35]  H. Finch The conformational musings of a medicinal chemist. , 2014, Drug discovery today.

[36]  L. D. Bari,et al.  Conformational Study of 2,2‘-Homosubstituted 1,1‘-Binaphthyls by Means of UV and CD Spectroscopy , 1999 .

[37]  H. Kessler Konformation und biologische Wirkung von cyclischen Peptiden , 2006 .

[38]  M. Anantram,et al.  Conformational gating of DNA conductance , 2015, Nature Communications.

[39]  Minjie Li,et al.  Dynamic behavior of molecular switches in crystal under pressure and its reflection on tactile sensing. , 2015, Journal of the American Chemical Society.