Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: Quantitative analysis, test–retest reproducibility, and vulnerability to endogenous 5-HT tone

[1]  A. Beck,et al.  An inventory for measuring depression. , 1961, Archives of general psychiatry.

[2]  R. Kirk Experimental Design: Procedures for the Behavioral Sciences , 1970 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  M. Folstein,et al.  EFFECTS OF AGE ON DOPAMINE AND SEROTONIN RECEPTORS MEASURED BY POSITRON TOMOGRAPHY IN THE LIVING HUMAN BRAIN , 1984, Science.

[5]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[6]  M. Mintun,et al.  A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography , 1984, Annals of neurology.

[7]  Albert Gjedde,et al.  EFFECTS OF AGE ON DOPAMINE AND SEROTONIN RECEPTORS MEASURED BY POSITRON TOMOGRAPHY IN THE LIVING HUMAN BRAIN , 1985 .

[8]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors , 1985, Brain Research.

[9]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[10]  Alan A. Wilson,et al.  Localization of serotonin 5‐HT2 receptors in living human brain by positron emission tomography using N1‐([11C]‐methyl)‐2‐BR‐LSD , 1987, Synapse.

[11]  Anat Biegon,et al.  Autoradiographic analysis of age-dependent changes in serotonin 5-HT2 receptors of the human brain postmortem , 1990, Brain Research.

[12]  Axel Bossuyt,et al.  SPECT imaging of serotonin2 receptors in depression , 1992, Psychiatry Research: Neuroimaging.

[13]  T. Jones,et al.  Spectral Analysis of Dynamic PET Studies , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  J. Kehne,et al.  Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. , 1993, The Journal of pharmacology and experimental therapeutics.

[15]  Masaomi Iyo,et al.  The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain , 1993, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[16]  C Crouzel,et al.  Loss of brain 5-HT2 receptors in Alzheimer's disease. In vivo assessment with positron emission tomography and [18F]setoperone. , 1993, Brain : a journal of neurology.

[17]  J. Seibyl,et al.  SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil: kinetic and equilibrium paradigms. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  S. Zoghbi,et al.  Evaluation of ultrafiltration for the free-fraction determination of single photon emission computed tomography (SPECT) radiotracers: beta-CIT, IBF, and iomazenil. , 1994, Journal of pharmaceutical sciences.

[19]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[20]  J S Fowler,et al.  Evaluation of age-related changes in serotonin 5-HT2 and dopamine D2 receptor availability in healthy human subjects. , 1995, Life sciences.

[21]  Patrick Dupont,et al.  Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using [18F]altanserin and positron emission tomographic imaging , 1996, Psychiatry Research: Neuroimaging.

[22]  J. Kehne,et al.  Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. , 1996, The Journal of pharmacology and experimental therapeutics.

[23]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[24]  C. Halldin,et al.  [11C]MDL 100907, a radioligland for selective imaging of 5-HT(2A) receptors with positron emission tomography. , 1996, Life sciences.

[25]  A. Sleight,et al.  Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. , 1996, Biochemical pharmacology.

[26]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[27]  J. Palacios,et al.  Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907 , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[28]  M Diksic,et al.  Differences between males and females in rates of serotonin synthesis in human brain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Scott T. Grafton,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[30]  Toru Maeshima,et al.  Serotonin2A receptor-like immunoreactivity in rat cerebellar Purkinje cells , 1998, Neuroscience Letters.

[31]  J. Palacios,et al.  [3H]MDL100,907 labels 5-HT2A serotonin receptors selectively in primate brain , 1998, Neuropharmacology.

[32]  Chris Baeken,et al.  123I-5-I-R91150, a new single-photon emission tomography ligand for 5-HT2A receptors: influence of age and gender in healthy subjects , 1998, European Journal of Nuclear Medicine.

[33]  Charles F. Reynolds,et al.  Reduced binding of [ 18 F ]altanserin to serotonin type 2A receptors in aging: persistence of effect after partial volume correction , 1998, Brain Research.

[34]  C. Halldin,et al.  PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  D. Scott,et al.  Investigation of the CNS penetration of a potent 5-HT2a receptor antagonist (MDL 100,907) and an active metabolite (MDL 105,725) using in vivo microdialysis sampling in the rat. , 1998, Journal of pharmaceutical and biomedical analysis.

[36]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[37]  N. Simpson,et al.  PET Studies of Binding Competition between Endogenous Dopamine and the D1 Radiotracer [11C]NNC 756 , 1998, NeuroImage.

[38]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[39]  L. Descarries,et al.  Cellular and subcellular distribution of the serotonin 5‐HT2A receptor in the central nervous system of adult rat , 1999, The Journal of comparative neurology.

[40]  B. Largent,et al.  High‐Affinity Agonist Binding Correlates with Efficacy (Intrinsic Activity) at the Human Serotonin 5‐HT2A and 5‐HT2C Receptors: Evidence Favoring the Ternary Complex and Two‐State Models of Agonist Action , 1999, Journal of neurochemistry.

[41]  S. Kapur,et al.  Prefrontal cortex 5-HT2 receptors in depression: an [18F]setoperone PET imaging study. , 1999, The American journal of psychiatry.

[42]  B. Roth,et al.  Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo , 1999, Neuroscience.

[43]  Khalid Mahmood,et al.  An efficient synthesis of the precursors of [11C]MDL 100907 labeled in two specific positions , 1999 .

[44]  J D Malley,et al.  In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration , 2000, Synapse.

[45]  L. Farde,et al.  High 5HT2A receptor occupancy in M100907-treated schizophrenic patients , 2000, Psychopharmacology.

[46]  Hideo Tsukada,et al.  Age-related reduction of [11C]MDL100,907 binding to central 5-HT2A receptors: PET study in the conscious monkey brain , 2000, Brain Research.

[47]  G. Sedvall,et al.  Autoradiographic localization of 5‐HT2A receptors in the human brain using [3H]M100907 and [11C]M100907 , 2000, Synapse.

[48]  Christer Halldin,et al.  Measurement of Striatal and Extrastriatal Dopamine D1 Receptor Binding Potential With [11C]NNC 112 in Humans: Validation and Reproducibility , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  W C Eckelman,et al.  Kinetic Analysis of the 5-HT2A Ligand [11C]MDL 100,907 , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[50]  Paul J. Harrison,et al.  Expression of serotonin 5‐HT2A receptors in the human cerebellum and alterations in schizophrenia , 2001, Synapse.

[51]  P F Liddle,et al.  Effects of rapid tryptophan depletion on brain 5-HT2 receptors: a PET study , 2001, British Journal of Psychiatry.

[52]  J. Price,et al.  Altered serotonin 2A receptor activity in women who have recovered from bulimia nervosa. , 2001, The American journal of psychiatry.

[53]  O. Jørgensen,et al.  Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling. , 2001, Neurotoxicology and teratology.

[54]  M Slifstein,et al.  Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. , 2001, Nuclear medicine and biology.

[55]  Abraham Z Snyder,et al.  Greater loss of 5-HT(2A) receptors in midlife than in late life. , 2002, The American journal of psychiatry.

[56]  R. V. Van Heertum,et al.  Prefrontal Dopamine D1 Receptors and Working Memory in Schizophrenia , 2002, The Journal of Neuroscience.

[57]  Susan Hume,et al.  Fenfluramine evokes 5‐HT2A receptor‐mediated responses but does not displace [11C]MDL 100907: Small animal PET and gene expression studies , 2003, Synapse.

[58]  Claus Svarer,et al.  Quantification of 5-HT2A Receptors in the Human Brain Using [18F]Altanserin-PET and the Bolus/Infusion Approach , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[59]  Bryan L Roth,et al.  The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. , 2003, Molecular pharmacology.

[60]  J. Korf,et al.  Imaging of the 5-HT2A system: age-, gender-, and Alzheimer’s disease-related findings , 2003, Neurobiology of Aging.

[61]  Olaf B. Paulson,et al.  A database of [18F]-altanserin binding to 5-HT2A receptors in normal volunteers: normative data and relationship to physiological and demographic variables , 2004, NeuroImage.

[62]  A. Carr,et al.  [3H]MDL 100,907: a novel selective 5-HT2A receptor ligand , 1996, Naunyn-Schmiedeberg's Archives of Pharmacology.

[63]  E. sanders-Bush,et al.  His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. , 2004, Molecular pharmacology.

[64]  Søren Holm,et al.  [18F]altanserin Binding to Human 5HT2A Receptors is Unaltered after Citalopram and Pindolol Challenge , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  Charles W Bradberry,et al.  Phasic Alterations in Dopamine and Serotonin Release in Striatum and Prefrontal Cortex in Response to Cocaine Predictive Cues in Behaving Rhesus Macaques , 2004, Neuropsychopharmacology.

[66]  Nic Gillings,et al.  Binding characteristics of the 5‐HT2A receptor antagonists altanserin and MDL 100907 , 2005, Synapse.

[67]  Daniela Perani,et al.  Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration , 2005, Annals of neurology.

[68]  J. Kehne,et al.  Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function , 2005, Psychopharmacology.

[69]  Mark Slifstein,et al.  Effects of reduced endogenous 5‐HT on the in vivo binding of the serotonin transporter radioligand 11C‐DASB in healthy humans , 2005, Synapse.

[70]  Peter S Talbot,et al.  Rapid Tryptophan Depletion Improves Decision-Making Cognition in Healthy Humans without Affecting Reversal Learning or Set Shifting , 2006, Neuropsychopharmacology.

[71]  Zubin Bhagwagar,et al.  Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [(11)C]MDL 100,907. , 2006, The American journal of psychiatry.

[72]  Peter S Talbot,et al.  Anterior Cingulate and Subgenual Prefrontal Blood Flow Changes Following Tryptophan Depletion in Healthy Males , 2006, Neuropsychopharmacology.

[73]  W J Riedel,et al.  Serotonergic vulnerability and depression: assumptions, experimental evidence and implications , 2007, Molecular Psychiatry.

[74]  Vincent J Cunningham,et al.  Validation of a Tracer Kinetic Model for the Quantification of 5-HT2A Receptors in Human Brain with [11C]MDL 100,907 , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[75]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[76]  Alessandra Gorini,et al.  In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder , 2008, NeuroImage.

[77]  Søren Holm,et al.  Longitudinal assessment of cerebral 5-HT2A receptors in healthy elderly volunteers: an [18F]-altanserin PET study , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[78]  Markus Piel,et al.  Synthesis and in vitro affinities of various MDL 100907 derivatives as potential 18F-radioligands for 5-HT2A receptor imaging with PET. , 2009, Bioorganic & medicinal chemistry.

[79]  Markus Piel,et al.  18F-labeling and evaluation of novel MDL 100907 derivatives as potential 5-HT2A antagonists for molecular imaging. , 2010, Nuclear medicine and biology.

[80]  Mark Slifstein,et al.  Increased Serotonin 2A Receptor Availability in the Orbitofrontal Cortex of Physically Aggressive Personality Disordered Patients , 2010, Biological Psychiatry.

[81]  Anders Ettrup,et al.  Radiosynthesis and Evaluation of 11C-CIMBI-5 as a 5-HT2A Receptor Agonist Radioligand for PET , 2010, The Journal of Nuclear Medicine.

[82]  Rainer Hinz,et al.  Simplified quantification of 5-HT2A receptors in the human brain with [11C]MDL 100,907 PET and non-invasive kinetic analyses , 2010, NeuroImage.