A Time-Reversible Variable-Stepsize Integrator for Constrained Dynamics

This article considers the design and implementation of variable-timestep methods for simulating holonomically constrained mechanical systems. Symplectic variable stepsizes are briefly discussed, and we consider time-reparameterization techniques employing a time-reversible (symmetric) integration method to solve the equations of motion. We give several numerical examples, including a simulation of an elastic (inextensible, unshearable) rod undergoing large deformations and collisions with the sides of a bounding box. Numerical experiments indicate that adaptive stepping can significantly smooth the numerical energy and improve the overall efficiency of the simulation.

[1]  Benedict J. Leimkuhler,et al.  The Adaptive Verlet Method , 1997, SIAM J. Sci. Comput..

[2]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[3]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[4]  T. Schlick,et al.  A separating framework for increasing the timestep in molecular dynamics , 1997 .

[5]  Jerrold E. Marsden,et al.  Mechanical systems with symmetry, variational principles, and integration algorithms , 1997 .

[6]  Benedict Leimkuhler,et al.  Asymptotic Error Analysis of the Adaptive Verlet Method , 1999 .

[7]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[8]  Benedict Leimkuhler,et al.  Symplectic Methods For Conservative Multibody Systems , 1993 .

[9]  Ernst Hairer,et al.  Variable time step integration with symplectic methods , 1997 .

[10]  P. Hut,et al.  Building a better leapfrog , 1995 .

[11]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[12]  T. Schlick,et al.  Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme , 1995 .

[13]  Jason Frank,et al.  Geometric Integrators for Classical Spin Systems , 1997 .

[14]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[15]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[16]  Eric Barth,et al.  Algorithms for constrained molecular dynamics , 1995, J. Comput. Chem..

[17]  K. F. Sundman,et al.  Mémoire sur le problème des trois corps , 1913 .

[18]  I. Klapper Biological Applications of the Dynamics of Twisted Elastic Rods , 1996 .

[19]  J. Maddocks,et al.  A Continuum Rod Model of Sequence-Dependent DNA Structure , 1996 .

[20]  John H. Maddocks,et al.  An impetus-striction simulation of the dynamics of an elastica , 1996 .

[21]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[22]  S. Reich Symplectic integration of constrained Hamiltonian systems by composition methods , 1996 .

[23]  Sverre J. Aarseth,et al.  Direct integration methods of theN-body problem , 1971 .

[24]  Victor Szebehely,et al.  Treatment of Close Approaches in the Numerical Integration of the Gravitational Problem of N-Bodies (Papers appear in the Proceedings of IAU Colloquium No. 10 Gravitational N-Body Problem (ed. by Myron Lecar), R. Reidel Publ. Co. , Dordrecht-Holland.) , 1971 .

[25]  S. Antman Nonlinear problems of elasticity , 1994 .

[26]  E. Hairer,et al.  Accurate long-term integration of dynamical systems , 1995 .

[27]  Robert D. Skeel Variable step size destabilizes the Störmer/leapfrog/verlet method , 1993 .