Geodesy constraints on the interior structure and composition of Mars

[1]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[2]  H. Fukui,et al.  Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15–23 GPa pressure range , 2009 .

[3]  A. Rivoldini,et al.  The interior structure of Mercury and its core sulfur content , 2009 .

[4]  David E. Smith,et al.  Time variations of Mars' gravitational field and seasonal changes in the masses of the polar ice caps , 2009 .

[5]  G. Balmino,et al.  Martian gravity field model and its time variations from MGS and Odyssey data , 2009 .

[6]  P. Tarits,et al.  Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data , 2009 .

[7]  T. Gudkova,et al.  On models of Mars’ interior and amplitudes of forced nutations: 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core–mantle boundary , 2009 .

[8]  G. Morard,et al.  In situ determination of Fe-Fe3S phase diagram and liquid structural properties up to 65 GPa , 2008 .

[9]  H. Terasaki,et al.  The effect of sulfur content on density of the liquid Fe–S at high pressure , 2008 .

[10]  Y. Fei,et al.  Effect of Ni on Fe–FeS phase relations at high pressure and high temperature , 2008 .

[11]  S. Hauck,,et al.  Non‐ideal liquidus curve in the Fe‐S system and Mercury's snowing core , 2008 .

[12]  J. Bass,et al.  On the bulk composition of the lower mantle: Predictions and limitations from generalized inversion of radial seismic profiles , 2007 .

[13]  C. Liebske,et al.  Mars: A New Core-Crystallization Regime , 2007, Science.

[14]  R. Boehler,et al.  Eutectic melting in the system Fe-S to 44 GPa , 2007 .

[15]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[16]  H. Terasaki,et al.  Immiscible two-liquid regions in the Fe–O–S system at high pressure: Implications for planetary cores , 2007 .

[17]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[18]  A. Rivoldini,et al.  A top-down origin for martian mantle plumes , 2006 .

[19]  J. Forbes,et al.  Thermospheric Studies with Mars Global Surveyor , 2006 .

[20]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[21]  J. V. Revadekar,et al.  Global observed changes in daily climate extremes of temperature and precipitation , 2006 .

[22]  S. Hauck,,et al.  Sulfur's impact on core evolution and magnetic field generation on Ganymede , 2005 .

[23]  T. V. Gudkova,et al.  Construction of Martian Interior Model , 2005 .

[24]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[25]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[26]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[27]  T. Burbine,et al.  Determining the possible building blocks of the Earth and Mars , 2004 .

[28]  Y. Fei,et al.  Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation , 2004 .

[29]  K. Hirose,et al.  Phase relations in the system Fe-FeSi at 21 GPa , 2004 .

[30]  D. Rubie,et al.  Partitioning of oxygen during core formation on the Earth and Mars , 2003, Nature.

[31]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[32]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[33]  T. Hoolst,et al.  Mercury's tides and interior structure , 2003 .

[34]  B. Schmitt,et al.  Possible identification of local deposits of Cl2SO2 on Io from NIMS/Galileo spectra , 2003 .

[35]  D. Giardini,et al.  Inferring upper-mantle temperatures from seismic velocities , 2003 .

[36]  T. Spohn,et al.  Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution , 2003 .

[37]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[38]  P. Balog,et al.  Equation of state of liquid Fe‐10 wt % S: Implications for the metallic cores of planetary bodies , 2003 .

[39]  V. Dehant,et al.  Tidally induced surface displacements, external potential variations, and gravity variations on Mars , 2003 .

[40]  S. Murty,et al.  Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of martian meteorites , 2003 .

[41]  T. Ahrens,et al.  Phase diagram of iron, revised‐core temperatures , 2002 .

[42]  H. Mao,et al.  Sulfur in the Earth’s inner core , 2001 .

[43]  L. Lines Introduction to the Physics of the Earth's Interior , 2001 .

[44]  Jeannot Trampert,et al.  Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle , 2001 .

[45]  Maria T. Zuber,et al.  The crust and mantle of Mars , 2001, Nature.

[46]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[47]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[48]  Y. Fei,et al.  Structure type and bulk modulus of Fe3S, a new iron-sulfur compound , 2000 .

[49]  O. Anderson The Grüneisen ratio for the last 30 years , 2000 .

[50]  Interior structure models, Fe/Si ratio and parameters of figure for Mars , 2000 .

[51]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[52]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[53]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[54]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[55]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[56]  Uchida,et al.  The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction , 1998, Science.

[57]  H. Mao,et al.  Melting and crystal structure of iron at high pressures and temperatures , 1998 .

[58]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[59]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[60]  C. Sotin,et al.  Theoretical seismic models of Mars : the importance of the iron content of the mantle , 1996 .

[61]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[62]  J. Poirier Light elements in the Earth's outer core: A critical review , 1994 .

[63]  W. Anderson,et al.  An equation of state for liquid iron and implications for the Earth's core , 1994 .

[64]  R. Boehler Temperatures in the Earth's core from melting-point measurements of iron at high static pressures , 1993, Nature.

[65]  R. Boehler Melting of the FeFeO and the FeFeS systems at high pressure: Constraints on core temperatures , 1992 .

[66]  M. Bukowinski Introduction to the physics of the earth's interior , 1992 .

[67]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[68]  E. Takahashi Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite , 1990 .

[69]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[70]  D. L. Anderson Temperature and pressure derivatives of elastic constants with application to the mantle , 1988 .

[71]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[72]  R. L. Duncombe,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .

[73]  O. Anderson,et al.  Evidence supporting the approximation γρ = const for the Grüneisen parameter of the Earth's lower mantle , 1979 .

[74]  J. M. Toguri,et al.  Densities of the Molten Fes, Fes–Cu2S and Fe–S–O Systems—Utilizing A Bottom-Balance Archimedean Technique , 1979 .

[75]  Frank D. Stacey,et al.  Applications of thermodynamics to fundamental earth physics , 1977 .

[76]  F. D. Stacey Physics of the earth , 1977 .

[77]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[78]  P. M. Bell,et al.  Melting relations in the Fe-rich portion of the system FezFeS at 30 kb pressure , 1969 .

[79]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .