Automatic threshold and run parameter selection: a climatology for extreme hourly precipitation in Switzerland

Extreme value analyses of a large number of relatively short time series are in increasing demand in environmental sciences and design. Here, we present an automated procedure for the peaks-over-threshold (POT) approach to extreme value theory and use it to provide a climatology of extreme hourly precipitation in Switzerland. The POT approach fits the generalized Pareto distribution (GPD) to independent exceedances above some high threshold. To guarantee independence, the time series is pruned: exceedances separated by less than a fixed interval called the run parameter are considered a cluster, and all but the cluster maxima are discarded. We propose the automation of an existing graphical method for joint selection of threshold and run parameter. Hourly precipitation is analyzed at 59 stations of the MeteoSwiss observational network over the period 1981–2010. The four seasons are considered separately. When necessary, a simple detrending is applied. Results suggest that unnecessarily large run parameters have adverse effects on the estimation of the GPD parameters. The proposed method yields mean cluster sizes that reflect the seasonal and geographical variation of lag dependence of hourly precipitation. The climatology, as represented by the return level maps and Alpine cross-section, mirror known aspects of the Swiss climate. Unlike for daily precipitation, summer thunderstorm tracks are visible in the seasonal frequency of events, rather than in the amplitude of rare events.

[1]  Georg J. Mayr,et al.  Lightning in the eastern Alps 1993-1999, part I: Thunderstorm tracks , 2004 .

[2]  C. Schär,et al.  Long-Term Simulations of Thermally Driven Flows and Orographic Convection at Convection-Parameterizing and Cloud-Resolving Resolutions , 2013 .

[3]  David Walshaw,et al.  Getting the Most From Your Extreme Wind Data: A Step by Step Guide , 1994, Journal of research of the National Institute of Standards and Technology.

[4]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[5]  E. Zelenhasić,et al.  A Stochastic Model for Flood Analysis , 1970 .

[6]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[7]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[8]  K. Revfeim Seasonal patterns in extreme 1‐hour rainfalls , 1982 .

[9]  Tailen Hsing,et al.  On the characterization of certain point processes , 1987 .

[10]  D. Maraun,et al.  The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statistics , 2009 .

[11]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Rob J Hyndman,et al.  Sample Quantiles in Statistical Packages , 1996 .

[13]  Lee Fawcett,et al.  Improved estimation for temporally clustered extremes , 2007 .

[14]  P. Friederichs Statistical downscaling of extreme precipitation events using extreme value theory , 2010 .

[15]  D. Maraun,et al.  The influence of synoptic airflow on UK daily precipitation extremes. Part I: Observed spatio-temporal relationships , 2009 .

[16]  Jennifer L. Wadsworth,et al.  Likelihood-based procedures for threshold diagnostics and uncertainty in extreme value modelling , 2012 .

[17]  Demetris Koutsoyiannis,et al.  A mathematical framework for studying rainfall intensity-duration-frequency relationships , 1998 .

[18]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[19]  M. Stoffel,et al.  Atmospheric Forcing of Debris Flows in the Southern Swiss Alps , 2013 .

[20]  C. Frei,et al.  The climate of daily precipitation in the Alps: development and analysis of a high‐resolution grid dataset from pan‐Alpine rain‐gauge data , 2014 .

[21]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[22]  C. Schär,et al.  A PRECIPITATION CLIMATOLOGY OF THE ALPS FROM HIGH-RESOLUTION RAIN-GAUGE OBSERVATIONS , 1998 .

[23]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[24]  N. Caine,et al.  The Rainfall Intensity - Duration Control of Shallow Landslides and Debris Flows , 1980 .

[25]  R. Houze Stratiform precipitation in regions of convection : A meteorological paradox ? , 1997 .

[26]  Adrian M. Altenhoff,et al.  A gridded hourly precipitation dataset for Switzerland using rain‐gauge analysis and radar‐based disaggregation , 2010 .

[27]  Henning W. Rust,et al.  Modelling seasonality in extreme precipitation , 2009 .

[28]  S. Girard,et al.  Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels , 2010 .

[29]  Autumnal precipitation distribution on the southern flank of the Alps: A numerical‐model study of the mechanisms , 2004 .

[30]  Johan Segers,et al.  Inference for clusters of extreme values , 2003 .

[31]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[32]  H. Theil A Rank-Invariant Method of Linear and Polynomial Regression Analysis , 1992 .

[33]  M. Kendall Rank Correlation Methods , 1949 .

[34]  Anthony C. Davison,et al.  Model misspecification in peaks over threshold analysis , 2010, 1010.1357.

[35]  T. Buishand,et al.  Estimation of the annual maximum distribution from samples of maxima in separate seasons , 1990 .

[36]  A. Frigessi,et al.  A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .

[37]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[38]  Jean Palutikof,et al.  A review of methods to calculate extreme wind speeds , 1999 .

[39]  Emmanouil N. Anagnostou,et al.  Flash floods: Observations and analysis of hydro-meteorological controls , 2010 .

[40]  H. B. Mann Nonparametric Tests Against Trend , 1945 .

[41]  J. Loup Zeller (J.), Geiger (H.), Rothlisberger (G.). — Starkniederschläge des schweizerischen Alpen und Alpenrandgebietes (Fortes précipitations dans les Alpes suisses et les régions voisines). , 1977 .

[42]  T. Hauf,et al.  The Characteristics of Lightning Occurrence in Southern Germany , 1996 .

[43]  M. Rossi,et al.  The rainfall intensity–duration control of shallow landslides and debris flows: an update , 2008 .

[44]  T. A. Buishand,et al.  Extreme rainfall estimation by combining data from several sites , 1991 .

[45]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[46]  Douglas Maraun,et al.  Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns , 2010 .

[47]  D. Dupuis Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .

[48]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[49]  A. V. Delden,et al.  The synoptic setting of thunderstorms in western Europe , 2001 .

[50]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[51]  W. Schmid,et al.  Surface Winds and Development of Thunderstorms along Southwest–Northeast Oriented Mountain Chains , 1999 .

[52]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .