Condensates in annuli: dimensionality of the variance

Static and dynamic properties of Bose-Einstein condensates in annular traps are investigated by solving the many-boson Schrödinger equation numerically accurately using the multiconfigurational time-dependent Hartree for bosons method. We concentrate on weakly-interacting bosons exhibiting low depletion. Analysis of the mean-field position variance, which accounts for the shape of the density only, and the many-body position variance, which incorporates a tiny amount of excitations through the reduced two-particle density matrix, shows that the former behaves essentially as a quasi-one-dimensional quantity whereas the latter as a two-dimensional quantity. This brings another dimension to the physics of bosons in ring-shaped traps. GRAPHICAL ABSTRACT

[1]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[2]  Shi-jie Yang,et al.  Ground-state phases of the spin-orbit-coupled spin-1 Bose gas in a toroidal trap , 2017 .

[3]  C. J. Foot,et al.  Time-averaged adiabatic ring potential for ultracold atoms , 2011, 1102.2895.

[4]  S. Klaiman,et al.  Variance as a sensitive probe of correlations , 2015, 1502.07528.

[5]  Y. Castin,et al.  Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach , 1998 .

[6]  L. Cederbaum,et al.  Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. , 2006, Physical review letters.

[7]  S. Adhikari Dipolar Bose-Einstein condensate in a ring or in a shell , 2012, 1205.2813.

[8]  L. Cederbaum,et al.  Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type , 2012, 1207.5128.

[9]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[10]  D. Angom,et al.  Ramifications of topology and thermal fluctuations in quasi-2D condensates , 2016, 1605.03818.

[11]  D. Angom,et al.  Geometry-induced modification of fluctuation spectrum in quasi-two-dimensional condensates , 2015, 1511.08655.

[12]  L. Cederbaum,et al.  Variance of an anisotropic Bose-Einstein condensate , 2017, Chemical Physics.

[13]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[14]  L. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for mixtures consisting of two types of identical particles , 2007 .

[15]  N. Efremidis,et al.  Rotating Bose-Einstein condensates with a finite number of atoms confined in a ring potential: Spontaneous symmetry breaking, beyond the mean-field approximation , 2016, 1611.09256.

[16]  S. Klaiman,et al.  Uncertainty product of an out-of-equilibrium many-particle system , 2015, 1509.00762.

[17]  S. Reimann,et al.  Bosonic and fermionic dipoles on a ring. , 2010, Physical review letters.

[18]  U. R. Fischer,et al.  Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions , 2015, 1502.04889.

[19]  M. Cozzini,et al.  Vortex signatures in annular Bose-Einstein condensates , 2005, cond-mat/0510143.

[20]  M. Kol'avr,et al.  Criticality and spin squeezing in the rotational dynamics of a Bose-Einstein condensate on a ring lattice , 2015, 1511.02320.

[21]  L. Cederbaum,et al.  Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates , 2017, Scientific Reports.

[22]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[23]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[24]  P. Schmelcher,et al.  Ultracold bosonic scattering dynamics off a repulsive barrier: Coherence loss at the dimensional crossover , 2017, 1705.04083.

[25]  A. Lode Multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom:Theory and composite fragmentation of multicomponent Bose-Einstein condensates , 2016, 1602.05791.

[26]  A. Streltsov,et al.  Many-body excitations and deexcitations in trapped ultracold bosonic clouds , 2016, 1608.08060.

[27]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[28]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[29]  C. Bao Oscillation bands of Bose-Einstein condensates on a ring: Beyond the mean-field theory , 2007, 0704.0842.

[30]  L. Cederbaum,et al.  Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions , 2013, 1312.6174.

[31]  L. Madsen,et al.  Multispecies time-dependent restricted-active-space self-consistent-field theory for ultracold atomic and molecular gases , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[32]  L. Cederbaum,et al.  Enhanced many-body effects in the excitation spectrum of a weakly interacting rotating Bose-Einstein condensate , 2018, Physical Review A.

[33]  P. Schmelcher,et al.  Unraveling the Structure of Ultracold Mesoscopic Collinear Molecular Ions. , 2017, Physical review letters.

[34]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[35]  U. Manthe,et al.  Wave‐packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl , 1992 .

[36]  A. Lode,et al.  Multiconfigurational time-dependent Hartree method for fermions: Implementation, exactness, and few-fermion tunneling to open space , 2015, 1510.02984.

[37]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[38]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[39]  Robert Seiringer,et al.  Proof of Bose-Einstein condensation for dilute trapped gases. , 2002, Physical review letters.

[40]  Horng-Tzer Yau,et al.  Rigorous derivation of the Gross-Pitaevskii equation. , 2006, Physical review letters.

[41]  P. Schmelcher,et al.  Beyond mean-field dynamics of ultra-cold bosonic atoms in higher dimensions: facing the challenges with a multi-configurational approach , 2016, 1608.04710.

[42]  T. Jacobson,et al.  A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. , 2017, Physical review. X.

[43]  Lorenz S. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems , 2007, cond-mat/0703237.

[44]  L. Cederbaum,et al.  General variational many-body theory with complete self-consistency for trapped bosonic systems , 2006, cond-mat/0603212.

[45]  S. Vishveshwara,et al.  Static and dynamic properties of shell-shaped condensates , 2017, Physical Review A.

[46]  The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. , 2013, The Journal of chemical physics.

[47]  Horng-Tzer Yau,et al.  Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems , 2005, math-ph/0508010.

[48]  J. Schmiedmayer,et al.  Conserving symmetries in Bose-Einstein condensate dynamics requires many-body theory , 2018, 1802.03746.

[49]  L. Cederbaum Exact many-body wave function and properties of trapped bosons in the infinite-particle limit , 2017 .

[50]  A. Streltsov Quantum systems of ultracold bosons with customized interparticle interactions , 2013, 1307.5187.

[51]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[52]  Y. Son,et al.  Vortex Dynamics in an Annular Bose-Einstein Condensate , 2012, 1206.5622.

[53]  I Bloch,et al.  Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators , 2011, Science.

[54]  L. Cederbaum,et al.  Exact ground state of finite Bose-Einstein condensates on a ring (14 pages) , 2005, cond-mat/0505323.

[55]  Y. Ashida,et al.  Diffraction-Unlimited Position Measurement of Ultracold Atoms in an Optical Lattice. , 2014, Physical review letters.

[56]  K. Suominen,et al.  Snake instability of ring dark solitons in toroidally trapped Bose-Einstein condensates , 2012, 1210.3994.

[57]  C. Bruder,et al.  Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity. , 2016, Physical review letters.

[58]  L. Cederbaum,et al.  Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions , 2015, 1508.03238.

[59]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[60]  M. Kasevich,et al.  Single-shot simulations of dynamic quantum many-body systems , 2015, Nature Physics.

[61]  J. Brand,et al.  Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics , 2015, 1510.07845.

[62]  A. Gammal,et al.  Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices , 2017, 1712.08792.

[63]  R. Mayol,et al.  Persistent currents supported by solitary waves in toroidal Bose-Einstein condensates , 2015 .

[64]  Thomas Liennard,et al.  Critical rotation of an annular superfluid Bose-Einstein condensate , 2012 .

[65]  H. Meyer,et al.  Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine. , 2010, The Journal of chemical physics.

[66]  P. Kevrekidis,et al.  Many-body quantum dynamics in the decay of bent dark solitons of Bose–Einstein condensates , 2017, 1706.07360.

[67]  L. Cederbaum,et al.  Attractive Bose-Einstein condensates in anharmonic traps: Accurate numerical treatment and the intriguing physics of the variance , 2018, Chemical Physics.

[68]  Ulrich Hohenester,et al.  Optimizing number squeezing when splitting a mesoscopic condensate , 2008, 0806.3877.

[69]  C. Clark,et al.  Phase fluctuations in anisotropic Bose-Einstein condensates: From cigars to rings , 2010, 1007.0281.

[70]  P. Schmelcher,et al.  A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. , 2017, The Journal of chemical physics.

[71]  Uwe Manthe,et al.  A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. , 2008, The Journal of chemical physics.

[72]  Jiang Yong Lu Phases , 2020, Co-evolution Strategy Canvas.

[73]  Chem. , 2020, Catalysis from A to Z.

[74]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[75]  L. Cederbaum,et al.  Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases , 2016, 1609.05895.

[76]  K. Kärkkäinen,et al.  Mixtures of Bose gases confined in a ring potential. , 2009, Physical review letters.

[77]  O. Alon,et al.  Impact of the range of the interaction on the quantum dynamics of a bosonic Josephson junction , 2017, Chemical Physics.

[78]  L. Cederbaum,et al.  Exact quantum dynamics of a bosonic Josephson junction. , 2009, Physical review letters.

[79]  C. Clark,et al.  Hysteresis in a quantized superfluid ‘atomtronic’ circuit , 2014, Nature.

[80]  L. Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems , 2016, 1612.04419.

[81]  Entanglement Induced Interactions in Binary Mixtures. , 2017, Physical review letters.

[82]  A. Fetter,et al.  Quantized superfluid vortex dynamics on cylindrical surfaces and planar annuli , 2017, 1708.08903.

[83]  M. Jones,et al.  Rotational Response of Two-Component Bose-Einstein Condensates in Ring Traps , 2010, 1001.5233.

[84]  Robert P. Smith,et al.  Quantized supercurrent decay in an annular Bose-Einstein condensate , 2011, 1112.0334.

[85]  T. Elsayed,et al.  Probing quantum states with momentum boosts , 2017, Physical Review A.

[86]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[87]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[88]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[89]  L. Cederbaum,et al.  Breaking the resilience of a two-dimensional Bose-Einstein condensate to fragmentation , 2014, 1409.0323.

[90]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[91]  S. Vishveshwara,et al.  Physics of hollow Bose-Einstein condensates , 2016, 1612.05809.

[92]  S Gupta,et al.  Bose-Einstein condensation in a circular waveguide. , 2005, Physical review letters.

[93]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .