Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime

We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the rotating black hole and the orbit of an inspiralling point particle. This technique allows us to study, for the first time, gravitational waveforms from large- and extreme-mass-ratio inspirals in Kerr spacetime extracted at null infinity. Tests and comparisons of our results with previous calculations establish the accuracy and efficiency of the hyperboloidal layer method.

[1]  S. Bernuzzi,et al.  Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform , 2010, 1012.2456.

[2]  W. Press,et al.  Radiation fields in the Schwarzschild background , 1973 .

[3]  Richard H. Price,et al.  Nonspherical perturbations of relativistic gravitational collapse , 1971 .

[4]  Anil Zenginoglu,et al.  Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem , 2008, 0810.1929.

[5]  Gaurav Khanna,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes: A new model of the source for the time domain perturbation equation , 2007 .

[6]  J. Stewart,et al.  Linearized perturbations of the Kerr spacetime and outer boundary conditions in numerical relativity , 2011 .

[7]  F. Zerilli,et al.  Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .

[8]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[9]  Y. Zlochower,et al.  Binary black hole waveform extraction at null infinity , 2011, 1106.4841.

[10]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[11]  Constant crunch coordinates for black hole simulations , 2000, gr-qc/0005113.

[12]  H. Pfeiffer,et al.  Black hole initial data on hyperboloidal slices , 2009, 0907.3163.

[13]  T. Damour,et al.  Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries , 2007, 0705.2519.

[14]  Numerical Relativity with the Conformal Field Equations , 2002, gr-qc/0204057.

[15]  S. Bernuzzi,et al.  Binary black hole merger in the extreme-mass-ratio limit: a multipolar analysis , 2010, 1003.0597.

[16]  Michael Jasiulek Hyperboloidal slices for the wave equation of Kerr–Schild metrics and numerical applications , 2011, 1109.2513.

[17]  Gaurav Khanna,et al.  Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits , 2008, 0803.0317.

[18]  F. D. Lora-Clavijo,et al.  Evolution of a massless test scalar field on boson star space-times , 2010, 1007.1162.

[19]  Gabor Zsolt Toth,et al.  Numerical investigation of the late-time Kerr tails , 2011, 1104.4199.

[20]  O. Rinne,et al.  Regularity of the Einstein equations at future null infinity , 2008, 0811.4109.

[21]  Anil Zenginoglu,et al.  Hyperboloidal layers for hyperbolic equations on unbounded domains , 2010, J. Comput. Phys..

[22]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[23]  Luciano Rezzolla,et al.  Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes , 2005 .

[24]  S. Bernuzzi,et al.  Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity , 2011, 1107.5402.

[25]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[26]  A. Buonanno,et al.  Modeling extreme mass ratio inspirals within the effective-one-body approach. , 2009, Physical review letters.

[27]  A. Zimmerman,et al.  New generic ringdown frequencies at the birth of a Kerr black hole , 2011, 1106.0782.

[28]  Numerical integration of the Teukolsky equation in the time domain , 2004, gr-qc/0409065.

[29]  J. Gair,et al.  Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.

[30]  Anil Zenginoglu,et al.  Asymptotics of Schwarzschild black hole perturbations , 2009, 0911.2450.

[31]  Self force via a Green's function decomposition , 2002, gr-qc/0202086.

[32]  F. Ohme,et al.  Stationary hyperboloidal slicings with evolved gauge conditions , 2009, 0905.0450.

[33]  J. Isenberg,et al.  K‐surfaces in the Schwarzschild space‐time and the construction of lattice cosmologies , 1980 .

[34]  S. Dolan,et al.  Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime , 2011, 1107.0012.

[35]  Anil Zenginoglu,et al.  Spacelike matching to null infinity , 2009, 0906.3342.

[36]  Roger Penrose,et al.  Zero rest-mass fields including gravitation: asymptotic behaviour , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  J. Gair,et al.  "Kludge"gravitational waveforms for a test-body orbiting a Kerr black hole , 2006, gr-qc/0607007.

[38]  Luth,et al.  Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole , 2010, 1006.3201.

[39]  Quasi-spherical light cones of the Kerr geometry , 1998, gr-qc/9803080.

[40]  Roger Penrose,et al.  Asymptotic properties of fields and space-times , 1963 .

[41]  Thibault Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000 .

[42]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Time-Dependent Scattering , 1996 .

[43]  T. Damour,et al.  Binary black hole merger in the extreme-mass-ratio limit , 2006, gr-qc/0612096.

[44]  O. Sarbach,et al.  Improved outer boundary conditions for Einstein's field equations , 2007, gr-qc/0703129.

[45]  Thomas Hagstrom,et al.  RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN , 2007 .

[46]  V. Cardoso,et al.  Test bodies and naked singularities: is the self-force the cosmic censor? , 2010, Physical review letters.

[47]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[48]  Michael Boyle,et al.  Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project , 2009, 0901.4399.

[49]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[50]  Anil Zenginoglu,et al.  Hyperboloidal evolution with the Einstein equations , 2008, Classical and Quantum Gravity.

[51]  Larry Smarr,et al.  Kinematical conditions in the construction of spacetime , 1978 .

[52]  S. Orszag,et al.  Numerical solution of problems in unbounded regions: Coordinate transforms , 1977 .

[53]  Gaurav Khanna,et al.  Binary black hole merger gravitational waves and recoil in the large mass ratio limit , 2010, 1003.0485.

[54]  Anil Zenginoglu,et al.  A hyperboloidal study of tail decay rates for scalar and Yang–Mills fields , 2008 .

[55]  Anil Zenginoglu,et al.  Saddle-point dynamics of a Yang–Mills field on the exterior Schwarzschild spacetime , 2010, 1005.1708.

[56]  Anil Zenginoglu,et al.  A geometric framework for black hole perturbations , 2011 .

[57]  C. Misner,et al.  Excising das All: Evolving Maxwell waves beyond Scri , 2006, gr-qc/0603034.

[58]  Towards absorbing outer boundaries in general relativity , 2006, gr-qc/0608051.

[59]  Anil Zenginoglu,et al.  Hyperboloidal foliations and scri-fixing , 2007, Classical and Quantum Gravity.

[60]  T. Tanaka,et al.  Gravitational waves from extreme mass-ratio inspirals , 2008 .

[61]  Anil Zenginoglu,et al.  Hyperboloidal evolution of test fields in three spatial dimensions , 2010, 1004.0760.

[62]  Stephen R. Lau Rapid evaluation of radiation boundary kernels for time-domain wave propagation on blackholes: theory and numerical methods , 2004 .

[63]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[64]  P. Diener,et al.  Effective source approach to self-force calculations , 2011, 1101.2925.

[65]  Stephen R. Lau,et al.  Rapid evaluation of radiation boundary kernels for time-domain wave propagation on black holes: implementation and numerical tests , 2004 .

[66]  Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.

[67]  O. Rinne An axisymmetric evolution code for the Einstein equations on hyperboloidal slices , 2009, 0910.0139.

[68]  J. Bardeen,et al.  Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces , 2011, 1101.5479.

[69]  Construction of Hyperboloidal Initial Data , 2002, gr-qc/0205083.

[70]  Christian Reisswig,et al.  Notes on the integration of numerical relativity waveforms , 2010, 1006.1632.

[71]  B. Szilágyi,et al.  Unambiguous determination of gravitational waveforms from binary black hole mergers. , 2009, Physical review letters.

[72]  T. Hinderer,et al.  Transient resonances in the inspirals of point particles into black holes. , 2010, Physical review letters.

[73]  Numerical investigation of highly excited magnetic monopoles in SU(2) Yang-Mills-Higgs theory , 2006, hep-th/0609110.

[74]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[75]  O. Sarbach,et al.  Instability of charged wormholes supported by a ghost scalar field , 2009, 0906.0420.

[76]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[77]  C. Gundlach,et al.  Asymptotically null slices in numerical relativity: mathematical analysis and spherical wave equation tests , 2005, gr-qc/0512149.

[78]  J. Gair,et al.  'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole , 2007 .

[79]  Light cone structure near null infinity of the Kerr metric , 2007, gr-qc/0701171.

[80]  Y. Mino,et al.  Gravitational radiation from plunging orbits: Perturbative study , 2008, 0809.2814.

[81]  A. Lun,et al.  The Kerr spacetime in generalized Bondi?Sachs coordinates , 2003 .

[82]  P. Laguna,et al.  Dynamics of perturbations of rotating black holes , 1997 .

[83]  H. Friedrich On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .

[84]  Helmut Friedrich,et al.  Cauchy problems for the conformal vacuum field equations in general relativity , 1983 .

[85]  Larry Smarr,et al.  Time functions in numerical relativity: Marginally bound dust collapse , 1979 .

[86]  W. Marsden I and J , 2012 .

[87]  R. Price,et al.  Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .

[88]  A. Buonanno,et al.  Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole , 2010, 1009.6013.

[89]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[90]  L. Price,et al.  Gravitational self-force for a particle in circular orbit around the Schwarzschild black hole , 2010 .

[91]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[92]  Ernst Nils Dorband,et al.  Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins , 2009, 0907.0462.